{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Bedrock" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%pip install boto3" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.llms.bedrock import Bedrock\n", "\n", "llm = Bedrock(\n", " credentials_profile_name=\"bedrock-admin\",\n", " model_id=\"amazon.titan-tg1-large\",\n", " endpoint_url=\"custom_endpoint_url\",\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Using in a conversation chain" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from langchain.chains import ConversationChain\n", "from langchain.memory import ConversationBufferMemory\n", "\n", "conversation = ConversationChain(\n", " llm=llm, verbose=True, memory=ConversationBufferMemory()\n", ")\n", "\n", "conversation.predict(input=\"Hi there!\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 4 }