{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# RAG based on Qianfan and BES" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "This notebook is an implementation of Retrieval augmented generation (RAG) using Baidu Qianfan Platform combined with Baidu ElasricSearch, where the original data is located on BOS.\n", "## Baidu Qianfan\n", "Baidu AI Cloud Qianfan Platform is a one-stop large model development and service operation platform for enterprise developers. Qianfan not only provides including the model of Wenxin Yiyan (ERNIE-Bot) and the third-party open-source models, but also provides various AI development tools and the whole set of development environment, which facilitates customers to use and develop large model applications easily.\n", "\n", "## Baidu ElasticSearch\n", "[Baidu Cloud VectorSearch](https://cloud.baidu.com/doc/BES/index.html?from=productToDoc) is a fully managed, enterprise-level distributed search and analysis service which is 100% compatible to open source. Baidu Cloud VectorSearch provides low-cost, high-performance, and reliable retrieval and analysis platform level product services for structured/unstructured data. As a vector database , it supports multiple index types and similarity distance methods. " ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Installation and Setup\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#!pip install qianfan\n", "#!pip install bce-python-sdk\n", "#!pip install elasticsearch == 7.11.0" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Imports" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from baidubce.bce_client_configuration import BceClientConfiguration\n", "from baidubce.auth.bce_credentials import BceCredentials\n", "from langchain.document_loaders.baiducloud_bos_directory import BaiduBOSDirectoryLoader\n", "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", "from langchain.embeddings.huggingface import HuggingFaceEmbeddings\n", "from langchain.vectorstores import BESVectorStore\n", "from langchain.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Document loading" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "bos_host = \"your bos eddpoint\"\n", "access_key_id = \"your bos access ak\"\n", "secret_access_key = \"your bos access sk\"\n", "\n", "# create BceClientConfiguration\n", "config = BceClientConfiguration(\n", " credentials=BceCredentials(access_key_id, secret_access_key), endpoint=bos_host\n", ")\n", "\n", "loader = BaiduBOSDirectoryLoader(conf=config, bucket=\"llm-test\", prefix=\"llm/\")\n", "documents = loader.load()\n", "\n", "text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=0)\n", "split_docs = text_splitter.split_documents(documents)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Embedding and VectorStore" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "embeddings = HuggingFaceEmbeddings(model_name=\"shibing624/text2vec-base-chinese\")\n", "embeddings.client = sentence_transformers.SentenceTransformer(embeddings.model_name)\n", "\n", "db = BESVectorStore.from_documents(\n", " documents=split_docs,\n", " embedding=embeddings,\n", " bes_url=\"your bes url\",\n", " index_name=\"test-index\",\n", " vector_query_field=\"vector\",\n", ")\n", "\n", "db.client.indices.refresh(index=\"test-index\")\n", "retriever = db.as_retriever()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## QA Retriever" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "llm = QianfanLLMEndpoint(\n", " model=\"ERNIE-Bot\",\n", " qianfan_ak=\"your qianfan ak\",\n", " qianfan_sk=\"your qianfan sk\",\n", " streaming=True,\n", ")\n", "qa = RetrievalQA.from_chain_type(\n", " llm=llm, chain_type=\"refine\", retriever=retriever, return_source_documents=True\n", ")\n", "\n", "query = \"什么是张量?\"\n", "print(qa.run(query))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "> 张量(Tensor)是一个数学概念,用于表示多维数据。它是一个可以表示多个数值的数组,可以是标量、向量、矩阵等。在深度学习和人工智能领域中,张量常用于表示神经网络的输入、输出和权重等。" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.9.17" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" } } }, "nbformat": 4, "nbformat_minor": 2 }