from __future__ import annotations import asyncio import functools import logging from typing import ( Any, AsyncIterable, AsyncIterator, Callable, Dict, Iterable, Iterator, List, Mapping, Optional, Tuple, TypeVar, ) from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain_core.language_models.llms import BaseLLM from langchain_core.outputs import Generation, GenerationChunk, LLMResult from langchain_core.pydantic_v1 import Field, root_validator from langchain_core.utils import get_from_dict_or_env from requests.exceptions import HTTPError from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) logger = logging.getLogger(__name__) T = TypeVar("T") def _create_retry_decorator(llm: Tongyi) -> Callable[[Any], Any]: min_seconds = 1 max_seconds = 4 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterward return retry( reraise=True, stop=stop_after_attempt(llm.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=(retry_if_exception_type(HTTPError)), before_sleep=before_sleep_log(logger, logging.WARNING), ) def check_response(resp: Any) -> Any: """Check the response from the completion call.""" if resp.status_code == 200: return resp elif resp.status_code in [400, 401]: raise ValueError( f"status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}" ) else: raise HTTPError( f"HTTP error occurred: status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}", response=resp, ) def generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator def _generate_with_retry(**_kwargs: Any) -> Any: resp = llm.client.call(**_kwargs) return check_response(resp) return _generate_with_retry(**kwargs) def stream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator def _stream_generate_with_retry(**_kwargs: Any) -> Any: responses = llm.client.call(**_kwargs) for resp in responses: yield check_response(resp) return _stream_generate_with_retry(**kwargs) async def astream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any: """Async version of `stream_generate_with_retry`. Because the dashscope SDK doesn't provide an async API, we wrap `stream_generate_with_retry` with an async generator.""" class _AioTongyiGenerator: def __init__(self, _llm: Tongyi, **_kwargs: Any): self.generator = stream_generate_with_retry(_llm, **_kwargs) def __aiter__(self) -> AsyncIterator[Any]: return self async def __anext__(self) -> Any: value = await asyncio.get_running_loop().run_in_executor( None, self._safe_next ) if value is not None: return value else: raise StopAsyncIteration def _safe_next(self) -> Any: try: return next(self.generator) except StopIteration: return None async for chunk in _AioTongyiGenerator(llm, **kwargs): yield chunk def generate_with_last_element_mark(iterable: Iterable[T]) -> Iterator[Tuple[T, bool]]: """Generate elements from an iterable, and a boolean indicating if it is the last element.""" iterator = iter(iterable) try: item = next(iterator) except StopIteration: return for next_item in iterator: yield item, False item = next_item yield item, True async def agenerate_with_last_element_mark( iterable: AsyncIterable[T], ) -> AsyncIterator[Tuple[T, bool]]: """Generate elements from an async iterable, and a boolean indicating if it is the last element.""" iterator = iterable.__aiter__() try: item = await iterator.__anext__() except StopAsyncIteration: return async for next_item in iterator: yield item, False item = next_item yield item, True class Tongyi(BaseLLM): """Tongyi Qwen large language models. To use, you should have the ``dashscope`` python package installed, and the environment variable ``DASHSCOPE_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.llms import Tongyi tongyi = tongyi() """ @property def lc_secrets(self) -> Dict[str, str]: return {"dashscope_api_key": "DASHSCOPE_API_KEY"} client: Any #: :meta private: model_name: str = "qwen-plus" """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) top_p: float = 0.8 """Total probability mass of tokens to consider at each step.""" dashscope_api_key: Optional[str] = None """Dashscope api key provide by Alibaba Cloud.""" streaming: bool = False """Whether to stream the results or not.""" max_retries: int = 10 """Maximum number of retries to make when generating.""" @property def _llm_type(self) -> str: """Return type of llm.""" return "tongyi" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["dashscope_api_key"] = get_from_dict_or_env( values, "dashscope_api_key", "DASHSCOPE_API_KEY" ) try: import dashscope except ImportError: raise ImportError( "Could not import dashscope python package. " "Please install it with `pip install dashscope`." ) try: values["client"] = dashscope.Generation except AttributeError: raise ValueError( "`dashscope` has no `Generation` attribute, this is likely " "due to an old version of the dashscope package. Try upgrading it " "with `pip install --upgrade dashscope`." ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Tongyi Qwen API.""" normal_params = { "model": self.model_name, "top_p": self.top_p, "api_key": self.dashscope_api_key, } return {**normal_params, **self.model_kwargs} @property def _identifying_params(self) -> Mapping[str, Any]: return {"model_name": self.model_name, **super()._identifying_params} def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: generations = [] if self.streaming: if len(prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") generation: Optional[GenerationChunk] = None for chunk in self._stream(prompts[0], stop, run_manager, **kwargs): if generation is None: generation = chunk else: generation += chunk assert generation is not None generations.append([self._chunk_to_generation(generation)]) else: params: Dict[str, Any] = self._invocation_params(stop=stop, **kwargs) for prompt in prompts: completion = generate_with_retry(self, prompt=prompt, **params) generations.append( [Generation(**self._generation_from_qwen_resp(completion))] ) return LLMResult( generations=generations, llm_output={ "model_name": self.model_name, }, ) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: generations = [] if self.streaming: if len(prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") generation: Optional[GenerationChunk] = None async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs): if generation is None: generation = chunk else: generation += chunk assert generation is not None generations.append([self._chunk_to_generation(generation)]) else: params: Dict[str, Any] = self._invocation_params(stop=stop, **kwargs) for prompt in prompts: completion = await asyncio.get_running_loop().run_in_executor( None, functools.partial( generate_with_retry, **{"llm": self, "prompt": prompt, **params} ), ) generations.append( [Generation(**self._generation_from_qwen_resp(completion))] ) return LLMResult( generations=generations, llm_output={ "model_name": self.model_name, }, ) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: params: Dict[str, Any] = self._invocation_params( stop=stop, stream=True, **kwargs ) for stream_resp, is_last_chunk in generate_with_last_element_mark( stream_generate_with_retry(self, prompt=prompt, **params) ): chunk = GenerationChunk( **self._generation_from_qwen_resp(stream_resp, is_last_chunk) ) if run_manager: run_manager.on_llm_new_token( chunk.text, chunk=chunk, verbose=self.verbose, ) yield chunk async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: params: Dict[str, Any] = self._invocation_params( stop=stop, stream=True, **kwargs ) async for stream_resp, is_last_chunk in agenerate_with_last_element_mark( astream_generate_with_retry(self, prompt=prompt, **params) ): chunk = GenerationChunk( **self._generation_from_qwen_resp(stream_resp, is_last_chunk) ) if run_manager: await run_manager.on_llm_new_token( chunk.text, chunk=chunk, verbose=self.verbose, ) yield chunk def _invocation_params(self, stop: Any, **kwargs: Any) -> Dict[str, Any]: params = { **self._default_params, **kwargs, } if stop is not None: params["stop"] = stop if params.get("stream"): params["incremental_output"] = True return params @staticmethod def _generation_from_qwen_resp( resp: Any, is_last_chunk: bool = True ) -> Dict[str, Any]: # According to the response from dashscope, # each chunk's `generation_info` overwrites the previous one. # Besides, The `merge_dicts` method, # which is used to concatenate `generation_info` in `GenerationChunk`, # does not support merging of int type values. # Therefore, we adopt the `generation_info` of the last chunk # and discard the `generation_info` of the intermediate chunks. if is_last_chunk: return dict( text=resp["output"]["text"], generation_info=dict( finish_reason=resp["output"]["finish_reason"], request_id=resp["request_id"], token_usage=dict(resp["usage"]), ), ) else: return dict(text=resp["output"]["text"]) @staticmethod def _chunk_to_generation(chunk: GenerationChunk) -> Generation: return Generation( text=chunk.text, generation_info=chunk.generation_info, )