{ "cells": [ { "cell_type": "markdown", "id": "683953b3", "metadata": {}, "source": [ "# Weaviate\n", "\n", "This notebook shows how to use functionality related to the Weaviate vector database." ] }, { "cell_type": "code", "execution_count": 1, "id": "aac9563e", "metadata": {}, "outputs": [], "source": [ "from langchain.embeddings.openai import OpenAIEmbeddings\n", "from langchain.text_splitter import CharacterTextSplitter\n", "from langchain.vectorstores import Weaviate\n", "from langchain.document_loaders import TextLoader" ] }, { "cell_type": "code", "execution_count": 2, "id": "a3c3999a", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import TextLoader\n", "loader = TextLoader('../../../state_of_the_union.txt')\n", "documents = loader.load()\n", "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n", "docs = text_splitter.split_documents(documents)\n", "\n", "embeddings = OpenAIEmbeddings()" ] }, { "cell_type": "code", "execution_count": null, "id": "5888dcc7", "metadata": {}, "outputs": [], "source": [ "import weaviate\n", "import os\n", "\n", "WEAVIATE_URL = \"\"\n", "client = weaviate.Client(\n", " url=WEAVIATE_URL,\n", " additional_headers={\n", " 'X-OpenAI-Api-Key': os.environ[\"OPENAI_API_KEY\"]\n", " }\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "f004e8ee", "metadata": {}, "outputs": [], "source": [ "client.schema.delete_all()\n", "client.schema.get()\n", "schema = {\n", " \"classes\": [\n", " {\n", " \"class\": \"Paragraph\",\n", " \"description\": \"A written paragraph\",\n", " \"vectorizer\": \"text2vec-openai\",\n", " \"moduleConfig\": {\n", " \"text2vec-openai\": {\n", " \"model\": \"babbage\",\n", " \"type\": \"text\"\n", " }\n", " },\n", " \"properties\": [\n", " {\n", " \"dataType\": [\"text\"],\n", " \"description\": \"The content of the paragraph\",\n", " \"moduleConfig\": {\n", " \"text2vec-openai\": {\n", " \"skip\": False,\n", " \"vectorizePropertyName\": False\n", " }\n", " },\n", " \"name\": \"content\",\n", " },\n", " ],\n", " },\n", " ]\n", "}\n", "\n", "client.schema.create(schema)" ] }, { "cell_type": "code", "execution_count": null, "id": "ef6d5d04", "metadata": {}, "outputs": [], "source": [ "vectorstore = Weaviate(client, \"Paragraph\", \"content\")" ] }, { "cell_type": "code", "execution_count": null, "id": "06e8c1ed", "metadata": {}, "outputs": [], "source": [ "query = \"What did the president say about Ketanji Brown Jackson\"\n", "docs = vectorstore.similarity_search(query)" ] }, { "cell_type": "code", "execution_count": null, "id": "38b86be6", "metadata": {}, "outputs": [], "source": [ "print(docs[0].page_content)" ] }, { "cell_type": "code", "execution_count": null, "id": "a359ed74", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }