"""Test Self-hosted LLMs.""" import pickle from typing import Any, List, Optional from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from langchain.llms import SelfHostedHuggingFaceLLM, SelfHostedPipeline model_reqs = ["pip:./", "transformers", "torch"] def get_remote_instance() -> Any: """Get remote instance for testing.""" import runhouse as rh return rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False) def test_self_hosted_huggingface_pipeline_text_generation() -> None: """Test valid call to self-hosted HuggingFace text generation model.""" gpu = get_remote_instance() llm = SelfHostedHuggingFaceLLM( model_id="gpt2", task="text-generation", model_kwargs={"n_positions": 1024}, hardware=gpu, model_reqs=model_reqs, ) output = llm("Say foo:") # type: ignore assert isinstance(output, str) def test_self_hosted_huggingface_pipeline_text2text_generation() -> None: """Test valid call to self-hosted HuggingFace text2text generation model.""" gpu = get_remote_instance() llm = SelfHostedHuggingFaceLLM( model_id="google/flan-t5-small", task="text2text-generation", hardware=gpu, model_reqs=model_reqs, ) output = llm("Say foo:") # type: ignore assert isinstance(output, str) def load_pipeline() -> Any: """Load pipeline for testing.""" model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) return pipe def inference_fn(pipeline: Any, prompt: str, stop: Optional[List[str]] = None) -> str: """Inference function for testing.""" return pipeline(prompt)[0]["generated_text"] def test_init_with_local_pipeline() -> None: """Test initialization with a self-hosted HF pipeline.""" gpu = get_remote_instance() pipeline = load_pipeline() llm = SelfHostedPipeline.from_pipeline( pipeline=pipeline, hardware=gpu, model_reqs=model_reqs, inference_fn=inference_fn, ) output = llm("Say foo:") # type: ignore assert isinstance(output, str) def test_init_with_pipeline_path() -> None: """Test initialization with a self-hosted HF pipeline.""" gpu = get_remote_instance() pipeline = load_pipeline() import runhouse as rh rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to( gpu, path="models" ) llm = SelfHostedPipeline.from_pipeline( pipeline="models/pipeline.pkl", hardware=gpu, model_reqs=model_reqs, inference_fn=inference_fn, ) output = llm("Say foo:") # type: ignore assert isinstance(output, str) def test_init_with_pipeline_fn() -> None: """Test initialization with a self-hosted HF pipeline.""" gpu = get_remote_instance() llm = SelfHostedPipeline( model_load_fn=load_pipeline, hardware=gpu, model_reqs=model_reqs, inference_fn=inference_fn, ) output = llm("Say foo:") # type: ignore assert isinstance(output, str)