import os import re from typing import Any, List, Union from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish from langchain_core.messages import AIMessageChunk from langchain_core.output_parsers import BaseOutputParser from langchain_core.outputs import ChatGeneration, Generation from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.tools import Tool from langchain_google_vertexai.chat_models import ChatVertexAI class _TestOutputParser(BaseOutputParser): def parse_result( self, result: List[Generation], *, partial: bool = False ) -> Union[AgentAction, AgentFinish]: if not isinstance(result[0], ChatGeneration): raise ValueError("This output parser only works on ChatGeneration output") message = result[0].message function_call = message.additional_kwargs.get("function_call", {}) if function_call: function_name = function_call["name"] tool_input = function_call.get("arguments", {}) content_msg = f"responded: {message.content}\n" if message.content else "\n" log_msg = ( f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n" ) return AgentActionMessageLog( tool=function_name, tool_input=tool_input, log=log_msg, message_log=[message], ) return AgentFinish( return_values={"output": message.content}, log=str(message.content) ) def parse(self, text: str) -> Union[AgentAction, AgentFinish]: raise ValueError("Can only parse messages") def test_tools() -> None: from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad import ( format_to_openai_function_messages, ) from langchain.chains import LLMMathChain llm = ChatVertexAI(model_name="gemini-pro") math_chain = LLMMathChain.from_llm(llm=llm) tools = [ Tool( name="Calculator", func=math_chain.run, description="useful for when you need to answer questions about math", ) ] prompt = ChatPromptTemplate.from_messages( [ ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) llm_with_tools = llm.bind(functions=tools) agent: Any = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_to_openai_function_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools | _TestOutputParser() ) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) response = agent_executor.invoke({"input": "What is 6 raised to the 0.43 power?"}) assert isinstance(response, dict) assert response["input"] == "What is 6 raised to the 0.43 power?" # convert string " The result is 2.160752567226312" to just numbers/periods # use regex to find \d+\.\d+ just_numbers = re.findall(r"\d+\.\d+", response["output"])[0] assert round(float(just_numbers), 2) == 2.16 def test_stream() -> None: from langchain.chains import LLMMathChain llm = ChatVertexAI(model_name="gemini-pro") math_chain = LLMMathChain.from_llm(llm=llm) tools = [ Tool( name="Calculator", func=math_chain.run, description="useful for when you need to answer questions about math", ) ] response = list(llm.stream("What is 6 raised to the 0.43 power?", functions=tools)) assert len(response) == 1 assert isinstance(response[0], AIMessageChunk) assert "function_call" in response[0].additional_kwargs def test_multiple_tools() -> None: from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad import format_to_openai_function_messages from langchain.chains import LLMMathChain from langchain.utilities import ( GoogleSearchAPIWrapper, ) llm = ChatVertexAI(model_name="gemini-pro", max_output_tokens=1024) math_chain = LLMMathChain.from_llm(llm=llm) google_search_api_key = os.environ["GOOGLE_SEARCH_API_KEY"] google_cse_id = os.environ["GOOGLE_CSE_ID"] search = GoogleSearchAPIWrapper( k=10, google_api_key=google_search_api_key, google_cse_id=google_cse_id ) tools = [ Tool( name="Calculator", func=math_chain.run, description="useful for when you need to answer questions about math", ), Tool( name="Search", func=search.run, description=( "useful for when you need to answer questions about current events. " "You should ask targeted questions" ), ), ] prompt = ChatPromptTemplate.from_messages( [ ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) llm_with_tools = llm.bind(functions=tools) agent: Any = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_to_openai_function_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools | _TestOutputParser() ) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) question = ( "Who is Leo DiCaprio's girlfriend? What is her " "current age raised to the 0.43 power?" ) response = agent_executor.invoke({"input": question}) assert isinstance(response, dict) assert response["input"] == question # xfail: not getting age in search result most of time # assert "3.850" in response["output"]