"""Test Alibaba Tongyi Chat Model.""" from typing import Any, cast from langchain_core.callbacks import CallbackManager from langchain_core.messages import AIMessage, BaseMessage, HumanMessage from langchain_core.outputs import ChatGeneration, LLMResult from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.pydantic_v1 import SecretStr from pytest import CaptureFixture from langchain_community.chat_models.tongyi import ChatTongyi from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler _FUNCTIONS: Any = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] def test_initialization() -> None: """Test chat model initialization.""" for model in [ ChatTongyi(model_name="qwen-turbo", api_key="xyz"), ChatTongyi(model="qwen-turbo", dashscope_api_key="xyz"), ]: assert model.model_name == "qwen-turbo" assert cast(SecretStr, model.dashscope_api_key).get_secret_value() == "xyz" def test_api_key_is_string() -> None: llm = ChatTongyi(dashscope_api_key="secret-api-key") assert isinstance(llm.dashscope_api_key, SecretStr) def test_api_key_masked_when_passed_via_constructor( capsys: CaptureFixture, ) -> None: llm = ChatTongyi(dashscope_api_key="secret-api-key") print(llm.dashscope_api_key, end="") # noqa: T201 captured = capsys.readouterr() assert captured.out == "**********" def test_default_call() -> None: """Test default model call.""" chat = ChatTongyi() response = chat(messages=[HumanMessage(content="Hello")]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_model() -> None: """Test model kwarg works.""" chat = ChatTongyi(model="qwen-plus") response = chat(messages=[HumanMessage(content="Hello")]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_functions_call_thoughts() -> None: chat = ChatTongyi(model="qwen-plus") prompt_tmpl = "Use the given functions to answer following question: {input}" prompt_msgs = [ HumanMessagePromptTemplate.from_template(prompt_tmpl), ] prompt = ChatPromptTemplate(messages=prompt_msgs) chain = prompt | chat.bind(functions=_FUNCTIONS) message = HumanMessage(content="What's the weather like in Shanghai today?") response = chain.batch([{"input": message}]) assert isinstance(response[0], AIMessage) assert "tool_calls" in response[0].additional_kwargs def test_multiple_history() -> None: """Tests multiple history works.""" chat = ChatTongyi() response = chat( messages=[ HumanMessage(content="Hello."), AIMessage(content="Hello!"), HumanMessage(content="How are you doing?"), ] ) assert isinstance(response, BaseMessage) assert isinstance(response.content, str) def test_stream() -> None: """Test that stream works.""" chat = ChatTongyi(streaming=True) callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) response = chat( messages=[ HumanMessage(content="Hello."), AIMessage(content="Hello!"), HumanMessage(content="Who are you?"), ], stream=True, callbacks=callback_manager, ) assert callback_handler.llm_streams > 0 assert isinstance(response.content, str) def test_multiple_messages() -> None: """Tests multiple messages works.""" chat = ChatTongyi() message = HumanMessage(content="Hi, how are you.") response = chat.generate([[message], [message]]) assert isinstance(response, LLMResult) assert len(response.generations) == 2 for generations in response.generations: assert len(generations) == 1 for generation in generations: assert isinstance(generation, ChatGeneration) assert isinstance(generation.text, str) assert generation.text == generation.message.content