# DeepSparse This page covers how to use the [DeepSparse](https://github.com/neuralmagic/deepsparse) inference runtime within LangChain. It is broken into two parts: installation and setup, and then examples of DeepSparse usage. ## Installation and Setup - Install the Python package with `pip install deepsparse` - Choose a [SparseZoo model](https://sparsezoo.neuralmagic.com/?useCase=text_generation) or export a support model to ONNX [using Optimum](https://github.com/neuralmagic/notebooks/blob/main/notebooks/opt-text-generation-deepsparse-quickstart/OPT_Text_Generation_DeepSparse_Quickstart.ipynb) ## Wrappers ### LLM There exists a DeepSparse LLM wrapper, which you can access with: ```python from langchain.llms import DeepSparse ``` It provides a unified interface for all models: ```python llm = DeepSparse(model='zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none') print(llm('def fib():')) ``` Additional parameters can be passed using the `config` parameter: ```python config = {'max_generated_tokens': 256} llm = DeepSparse(model='zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base-none', config=config) ```