{ "cells": [ { "cell_type": "markdown", "id": "5062941a", "metadata": {}, "source": [ "# Adding memory\n", "\n", "This shows how to add memory to an arbitrary chain. Right now, you can use the memory classes but need to hook it up manually" ] }, { "cell_type": "code", "execution_count": 1, "id": "7998efd8", "metadata": {}, "outputs": [], "source": [ "from langchain.chat_models import ChatOpenAI\n", "from langchain.memory import ConversationBufferMemory\n", "from langchain.schema.runnable import RunnableMap\n", "from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n", "\n", "model = ChatOpenAI()\n", "prompt = ChatPromptTemplate.from_messages([\n", " (\"system\", \"You are a helpful chatbot\"),\n", " MessagesPlaceholder(variable_name=\"history\"),\n", " (\"human\", \"{input}\")\n", "])" ] }, { "cell_type": "code", "execution_count": 2, "id": "fa0087f3", "metadata": {}, "outputs": [], "source": [ "memory = ConversationBufferMemory(return_messages=True)" ] }, { "cell_type": "code", "execution_count": 3, "id": "06b531ae", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'history': []}" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "memory.load_memory_variables({})" ] }, { "cell_type": "code", "execution_count": 4, "id": "d9437af6", "metadata": {}, "outputs": [], "source": [ "chain = RunnableMap({\n", " \"input\": lambda x: x[\"input\"],\n", " \"memory\": memory.load_memory_variables\n", "}) | {\n", " \"input\": lambda x: x[\"input\"],\n", " \"history\": lambda x: x[\"memory\"][\"history\"]\n", "} | prompt | model" ] }, { "cell_type": "code", "execution_count": 5, "id": "bed1e260", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "AIMessage(content='Hello Bob! How can I assist you today?', additional_kwargs={}, example=False)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inputs = {\"input\": \"hi im bob\"}\n", "response = chain.invoke(inputs)\n", "response" ] }, { "cell_type": "code", "execution_count": 6, "id": "890475b4", "metadata": {}, "outputs": [], "source": [ "memory.save_context(inputs, {\"output\": response.content})" ] }, { "cell_type": "code", "execution_count": 7, "id": "e8fcb77f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'history': [HumanMessage(content='hi im bob', additional_kwargs={}, example=False),\n", " AIMessage(content='Hello Bob! How can I assist you today?', additional_kwargs={}, example=False)]}" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "memory.load_memory_variables({})" ] }, { "cell_type": "code", "execution_count": 8, "id": "d837d5c3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "AIMessage(content='Your name is Bob.', additional_kwargs={}, example=False)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inputs = {\"input\": \"whats my name\"}\n", "response = chain.invoke(inputs)\n", "response" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" } }, "nbformat": 4, "nbformat_minor": 5 }