from abc import ABC, abstractmethod from typing import Callable, Optional from langchain_experimental.data_anonymizer.deanonymizer_mapping import MappingDataType from langchain_experimental.data_anonymizer.deanonymizer_matching_strategies import ( exact_matching_strategy, ) DEFAULT_DEANONYMIZER_MATCHING_STRATEGY = exact_matching_strategy class AnonymizerBase(ABC): """ Base abstract class for anonymizers. It is public and non-virtual because it allows wrapping the behavior for all methods in a base class. """ def anonymize(self, text: str, language: Optional[str] = None) -> str: """Anonymize text""" return self._anonymize(text, language) @abstractmethod def _anonymize(self, text: str, language: Optional[str]) -> str: """Abstract method to anonymize text""" class ReversibleAnonymizerBase(AnonymizerBase): """ Base abstract class for reversible anonymizers. """ def deanonymize( self, text_to_deanonymize: str, deanonymizer_matching_strategy: Callable[ [str, MappingDataType], str ] = DEFAULT_DEANONYMIZER_MATCHING_STRATEGY, ) -> str: """Deanonymize text""" return self._deanonymize(text_to_deanonymize, deanonymizer_matching_strategy) @abstractmethod def _deanonymize( self, text_to_deanonymize: str, deanonymizer_matching_strategy: Callable[[str, MappingDataType], str], ) -> str: """Abstract method to deanonymize text""" @abstractmethod def reset_deanonymizer_mapping(self) -> None: """Abstract method to reset deanonymizer mapping"""