{ "cells": [ { "cell_type": "markdown", "id": "73f9bf40", "metadata": {}, "source": [ "# LLM Serialization\n", "\n", "This notebook walks how to write and read an LLM Configuration to and from disk. This is useful if you want to save the configuration for a given LLM (eg the provider, the temperature, etc)." ] }, { "cell_type": "code", "execution_count": 1, "id": "9c9fb6ff", "metadata": {}, "outputs": [], "source": [ "from langchain.llms import OpenAI\n", "from langchain.llms.loading import load_llm" ] }, { "cell_type": "markdown", "id": "88ce018b", "metadata": {}, "source": [ "### Loading\n", "First, lets go over loading a LLM from disk. LLMs can be saved on disk in two formats: json or yaml. No matter the extension, they are loaded in the same way." ] }, { "cell_type": "code", "execution_count": 2, "id": "f12b28f3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\r\n", " \"model_name\": \"text-davinci-003\",\r\n", " \"temperature\": 0.7,\r\n", " \"max_tokens\": 256,\r\n", " \"top_p\": 1,\r\n", " \"frequency_penalty\": 0,\r\n", " \"presence_penalty\": 0,\r\n", " \"n\": 1,\r\n", " \"best_of\": 1,\r\n", " \"_type\": \"openai\"\r\n", "}" ] } ], "source": [ "!cat llm.json" ] }, { "cell_type": "code", "execution_count": 3, "id": "9ab709fc", "metadata": {}, "outputs": [], "source": [ "llm = load_llm(\"llm.json\")" ] }, { "cell_type": "code", "execution_count": 4, "id": "095b1d56", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "_type: openai\r\n", "best_of: 1\r\n", "frequency_penalty: 0\r\n", "max_tokens: 256\r\n", "model_name: text-davinci-003\r\n", "n: 1\r\n", "presence_penalty: 0\r\n", "temperature: 0.7\r\n", "top_p: 1\r\n" ] } ], "source": [ "!cat llm.yaml" ] }, { "cell_type": "code", "execution_count": 5, "id": "8cafaafe", "metadata": {}, "outputs": [], "source": [ "llm = load_llm(\"llm.yaml\")" ] }, { "cell_type": "markdown", "id": "ab3e4223", "metadata": {}, "source": [ "### Saving\n", "If you want to go from a LLM in memory to a serialized version of it, you can do so easily by calling the `.save` method. Again, this supports both json and yaml." ] }, { "cell_type": "code", "execution_count": 6, "id": "b38f685d", "metadata": {}, "outputs": [], "source": [ "llm.save(\"llm.json\")" ] }, { "cell_type": "code", "execution_count": 7, "id": "b7365503", "metadata": {}, "outputs": [], "source": [ "llm.save(\"llm.yaml\")" ] }, { "cell_type": "code", "execution_count": null, "id": "0e494851", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" } }, "nbformat": 4, "nbformat_minor": 5 }