{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### WhatsApp Chat\n", "\n", "This notebook covers how to load data from the WhatsApp Chats into a format that can be ingested into LangChain." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import WhatsAppChatLoader" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "loader = WhatsAppChatLoader(\"example_data/whatsapp_chat.txt\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "loader.load()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.1" }, "vscode": { "interpreter": { "hash": "384707f4965e853a82006e90614c2e1a578ea1f6eb0ee07a1dd78a657d37dd67" } } }, "nbformat": 4, "nbformat_minor": 2 }