# Log10 This page covers how to use the [Log10](https://log10.io) within LangChain. ## What is Log10? Log10 is an [open source](https://github.com/log10-io/log10) proxiless LLM data management and application development platform that lets you log, debug and tag your Langchain calls. ## Quick start 1. Create your free account at [log10.io](https://log10.io) 2. Add your `LOG10_TOKEN` and `LOG10_ORG_ID` from the Settings and Organization tabs respectively as environment variables. 3. Also add `LOG10_URL=https://log10.io` and your usual LLM API key: for e.g. `OPENAI_API_KEY` or `ANTHROPIC_API_KEY` to your environment ## How to enable Log10 data management for Langchain Integration with log10 is a simple one-line `log10_callback` integration as shown below: ```python from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage from log10.langchain import Log10Callback from log10.llm import Log10Config log10_callback = Log10Callback(log10_config=Log10Config()) messages = [ HumanMessage(content="You are a ping pong machine"), HumanMessage(content="Ping?"), ] llm = ChatOpenAI(model_name="gpt-3.5-turbo", callbacks=[log10_callback]) ``` [Log10 + Langchain + Logs docs](https://github.com/log10-io/log10/blob/main/logging.md#langchain-logger) [More details + screenshots](https://log10.io/docs/logs) including instructions for self-hosting logs ## How to use tags with Log10 ```python from langchain.llms import OpenAI from langchain.chat_models import ChatAnthropic from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage from log10.langchain import Log10Callback from log10.llm import Log10Config log10_callback = Log10Callback(log10_config=Log10Config()) messages = [ HumanMessage(content="You are a ping pong machine"), HumanMessage(content="Ping?"), ] llm = ChatOpenAI(model_name="gpt-3.5-turbo", callbacks=[log10_callback], temperature=0.5, tags=["test"]) completion = llm.predict_messages(messages, tags=["foobar"]) print(completion) llm = ChatAnthropic(model="claude-2", callbacks=[log10_callback], temperature=0.7, tags=["baz"]) llm.predict_messages(messages) print(completion) llm = OpenAI(model_name="text-davinci-003", callbacks=[log10_callback], temperature=0.5) completion = llm.predict("You are a ping pong machine.\nPing?\n") print(completion) ``` You can also intermix direct OpenAI calls and Langchain LLM calls: ```python import os from log10.load import log10, log10_session import openai from langchain.llms import OpenAI log10(openai) with log10_session(tags=["foo", "bar"]): # Log a direct OpenAI call response = openai.Completion.create( model="text-ada-001", prompt="Where is the Eiffel Tower?", temperature=0, max_tokens=1024, top_p=1, frequency_penalty=0, presence_penalty=0, ) print(response) # Log a call via Langchain llm = OpenAI(model_name="text-ada-001", temperature=0.5) response = llm.predict("You are a ping pong machine.\nPing?\n") print(response) ``` ## How to debug Langchain calls [Example of debugging](https://log10.io/docs/prompt_chain_debugging) [More Langchain examples](https://github.com/log10-io/log10/tree/main/examples#langchain)