from langchain.embeddings import OpenAIEmbeddings from langchain.retrievers.contextual_compression import ContextualCompressionRetriever from langchain.retrievers.document_compressors import EmbeddingsFilter from langchain.vectorstores import FAISS def test_contextual_compression_retriever_get_relevant_docs() -> None: """Test get_relevant_docs.""" texts = [ "This is a document about the Boston Celtics", "The Boston Celtics won the game by 20 points", "I simply love going to the movies", ] embeddings = OpenAIEmbeddings() base_compressor = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.75) base_retriever = FAISS.from_texts(texts, embedding=embeddings).as_retriever( search_kwargs={"k": len(texts)} ) retriever = ContextualCompressionRetriever( base_compressor=base_compressor, base_retriever=base_retriever ) actual = retriever.get_relevant_documents("Tell me about the Celtics") assert len(actual) == 2 assert texts[-1] not in [d.page_content for d in actual]