# rag_lantern This template performs RAG with Lantern. [Lantern](https://lantern.dev) is an open-source vector database built on top of [PostgreSQL](https://en.wikipedia.org/wiki/PostgreSQL). It enables vector search and embedding generation inside your database. ## Environment Setup Set the `OPENAI_API_KEY` environment variable to access the OpenAI models. To get your `OPENAI_API_KEY`, navigate to [API keys](https://platform.openai.com/account/api-keys) on your OpenAI account and create a new secret key. To find your `LANTERN_URL` and `LANTERN_SERVICE_KEY`, head to your Lantern project's [API settings](https://lantern.dev/dashboard/project/_/settings/api). - `LANTERN_URL` corresponds to the Project URL - `LANTERN_SERVICE_KEY` corresponds to the `service_role` API key ```shell export LANTERN_URL= export LANTERN_SERVICE_KEY= export OPENAI_API_KEY= ``` ## Setup Lantern Database Use these steps to setup your Lantern database if you haven't already. 1. Head to [https://lantern.dev](https://lantern.dev) to create your Lantern database. 2. In your favorite SQL client, jump to the SQL editor and run the following script to setup your database as a vector store: ```sql -- Create a table to store your documents create table documents ( id uuid primary key, content text, -- corresponds to Document.pageContent metadata jsonb, -- corresponds to Document.metadata embedding REAL[1536] -- 1536 works for OpenAI embeddings, change as needed ); -- Create a function to search for documents create function match_documents ( query_embedding REAL[1536], filter jsonb default '{}' ) returns table ( id uuid, content text, metadata jsonb, similarity float ) language plpgsql as $$ #variable_conflict use_column begin return query select id, content, metadata, 1 - (documents.embedding <=> query_embedding) as similarity from documents where metadata @> filter order by documents.embedding <=> query_embedding; end; $$; ``` ## Setup Environment Variables Since we are using [`Lantern`](https://python.langchain.com/docs/integrations/vectorstores/lantern) and [`OpenAIEmbeddings`](https://python.langchain.com/docs/integrations/text_embedding/openai), we need to load their API keys. ## Usage First, install the LangChain CLI: ```shell pip install -U langchain-cli ``` To create a new LangChain project and install this as the only package, you can do: ```shell langchain app new my-app --package rag-lantern ``` If you want to add this to an existing project, you can just run: ```shell langchain app add rag-lantern ``` And add the following code to your `server.py` file: ```python from rag_lantern.chain import chain as rag_lantern_chain add_routes(app, rag_lantern_chain, path="/rag-lantern") ``` (Optional) Let's now configure LangSmith. LangSmith will help us trace, monitor and debug LangChain applications. You can sign up for LangSmith [here](https://smith.langchain.com/). If you don't have access, you can skip this section ```shell export LANGCHAIN_TRACING_V2=true export LANGCHAIN_API_KEY= export LANGCHAIN_PROJECT= # if not specified, defaults to "default" ``` If you are inside this directory, then you can spin up a LangServe instance directly by: ```shell langchain serve ``` This will start the FastAPI app with a server is running locally at [http://localhost:8000](http://localhost:8000) We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs) We can access the playground at [http://127.0.0.1:8000/rag-lantern/playground](http://127.0.0.1:8000/rag-lantern/playground) We can access the template from code with: ```python from langserve.client import RemoteRunnable runnable = RemoteRunnable("http://localhost:8000/rag-lantern") ```