{ "cells": [ { "cell_type": "markdown", "id": "00695447", "metadata": { "tags": [] }, "source": [ "# Memory in LLMChain\n", "\n", "This notebook goes over how to use the Memory class with an `LLMChain`. \n", "\n", "We will add the [ConversationBufferMemory](https://api.python.langchain.com/en/latest/memory/langchain.memory.buffer.ConversationBufferMemory.html#langchain.memory.buffer.ConversationBufferMemory) class, although this can be any memory class." ] }, { "cell_type": "code", "execution_count": 1, "id": "9f1aaf47", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.chains import LLMChain\n", "from langchain.llms import OpenAI\n", "from langchain.memory import ConversationBufferMemory\n", "from langchain.prompts import PromptTemplate" ] }, { "cell_type": "markdown", "id": "4b066ced", "metadata": {}, "source": [ "The most important step is setting up the prompt correctly. In the below prompt, we have two input keys: one for the actual input, another for the input from the Memory class. Importantly, we make sure the keys in the `PromptTemplate` and the `ConversationBufferMemory` match up (`chat_history`)." ] }, { "cell_type": "code", "execution_count": 2, "id": "e5501eda", "metadata": { "tags": [] }, "outputs": [], "source": [ "template = \"\"\"You are a chatbot having a conversation with a human.\n", "\n", "{chat_history}\n", "Human: {human_input}\n", "Chatbot:\"\"\"\n", "\n", "prompt = PromptTemplate(\n", " input_variables=[\"chat_history\", \"human_input\"], template=template\n", ")\n", "memory = ConversationBufferMemory(memory_key=\"chat_history\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "f6566275", "metadata": { "tags": [] }, "outputs": [], "source": [ "llm = OpenAI()\n", "llm_chain = LLMChain(\n", " llm=llm,\n", " prompt=prompt,\n", " verbose=True,\n", " memory=memory,\n", ")" ] }, { "cell_type": "code", "execution_count": 4, "id": "e2b189dc", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n", "Prompt after formatting:\n", "\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n", "\n", "\n", "Human: Hi there my friend\n", "Chatbot:\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "' Hi there! How can I help you today?'" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "llm_chain.predict(human_input=\"Hi there my friend\")" ] }, { "cell_type": "code", "execution_count": 5, "id": "a902729f", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n", "Prompt after formatting:\n", "\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n", "\n", "Human: Hi there my friend\n", "AI: Hi there! How can I help you today?\n", "Human: Not too bad - how are you?\n", "Chatbot:\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "\" I'm doing great, thanks for asking! How are you doing?\"" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "llm_chain.predict(human_input=\"Not too bad - how are you?\")" ] }, { "cell_type": "markdown", "id": "33978824-0048-4e75-9431-1b2c02c169b0", "metadata": {}, "source": [ "## Adding Memory to a chat model-based `LLMChain`\n", "\n", "The above works for completion-style `LLM`s, but if you are using a chat model, you will likely get better performance using structured chat messages. Below is an example." ] }, { "cell_type": "code", "execution_count": 6, "id": "ae5309bb", "metadata": { "tags": [] }, "outputs": [], "source": [ "from langchain.chat_models import ChatOpenAI\n", "from langchain.schema import SystemMessage\n", "from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder" ] }, { "cell_type": "markdown", "id": "a237bbb8-e448-4238-8420-004e046ef84e", "metadata": {}, "source": [ "We will use the [ChatPromptTemplate](https://api.python.langchain.com/en/latest/prompts/langchain.prompts.chat.ChatPromptTemplate.html) class to set up the chat prompt.\n", "\n", "The [from_messages](https://api.python.langchain.com/en/latest/prompts/langchain.prompts.chat.ChatPromptTemplate.html#langchain.prompts.chat.ChatPromptTemplate.from_messages) method creates a `ChatPromptTemplate` from a list of messages (e.g., `SystemMessage`, `HumanMessage`, `AIMessage`, `ChatMessage`, etc.) or message templates, such as the [MessagesPlaceholder](https://api.python.langchain.com/en/latest/prompts/langchain.prompts.chat.MessagesPlaceholder.html#langchain.prompts.chat.MessagesPlaceholder) below.\n", "\n", "The configuration below makes it so the memory will be injected to the middle of the chat prompt, in the `chat_history` key, and the user's inputs will be added in a human/user message to the end of the chat prompt." ] }, { "cell_type": "code", "execution_count": 7, "id": "9bb8cde1-67c2-4133-b453-5c34fb36ff74", "metadata": { "tags": [] }, "outputs": [], "source": [ "prompt = ChatPromptTemplate.from_messages([\n", " SystemMessage(content=\"You are a chatbot having a conversation with a human.\"), # The persistent system prompt\n", " MessagesPlaceholder(variable_name=\"chat_history\"), # Where the memory will be stored.\n", " HumanMessagePromptTemplate.from_template(\"{human_input}\"), # Where the human input will injected\n", "])\n", " \n", "memory = ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True)" ] }, { "cell_type": "code", "execution_count": 8, "id": "9f77e466-a1a3-4c69-a001-ac5b7a40e219", "metadata": { "tags": [] }, "outputs": [], "source": [ "llm = ChatOpenAI()\n", "\n", "chat_llm_chain = LLMChain(\n", " llm=llm,\n", " prompt=prompt,\n", " verbose=True,\n", " memory=memory,\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "id": "f9709647-be82-43d5-b076-2a7da344ce8a", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n", "Prompt after formatting:\n", "\u001b[32;1m\u001b[1;3mSystem: You are a chatbot having a conversation with a human.\n", "Human: Hi there my friend\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "'Hello! How can I assist you today, my friend?'" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chat_llm_chain.predict(human_input=\"Hi there my friend\")" ] }, { "cell_type": "code", "execution_count": 10, "id": "bdf04ebe-525a-4156-a3a7-65fd2df8d6fc", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n", "Prompt after formatting:\n", "\u001b[32;1m\u001b[1;3mSystem: You are a chatbot having a conversation with a human.\n", "Human: Hi there my friend\n", "AI: Hello! How can I assist you today, my friend?\n", "Human: Not too bad - how are you?\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "\"I'm an AI chatbot, so I don't have feelings, but I'm here to help and chat with you! Is there something specific you would like to talk about or any questions I can assist you with?\"" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chat_llm_chain.predict(human_input=\"Not too bad - how are you?\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }