"""Test Graph Database Chain.""" import os from langchain.chains.graph_qa.cypher import GraphCypherQAChain from langchain.chains.loading import load_chain from langchain.graphs import Neo4jGraph from langchain.graphs.neo4j_graph import ( node_properties_query, rel_properties_query, rel_query, ) from langchain.llms.openai import OpenAI def test_connect_neo4j() -> None: """Test that Neo4j database is correctly instantiated and connected.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) output = graph.query( """ RETURN "test" AS output """ ) expected_output = [{"output": "test"}] assert output == expected_output def test_cypher_generating_run() -> None: """Test that Cypher statement is correctly generated and executed.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) # Delete all nodes in the graph graph.query("MATCH (n) DETACH DELETE n") # Create two nodes and a relationship graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" ) # Refresh schema information graph.refresh_schema() chain = GraphCypherQAChain.from_llm(OpenAI(temperature=0), graph=graph) output = chain.run("Who played in Pulp Fiction?") expected_output = " Bruce Willis played in Pulp Fiction." assert output == expected_output def test_cypher_top_k() -> None: """Test top_k parameter correctly limits the number of results in the context.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None TOP_K = 1 graph = Neo4jGraph( url=url, username=username, password=password, ) # Delete all nodes in the graph graph.query("MATCH (n) DETACH DELETE n") # Create two nodes and a relationship graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" "<-[:ACTED_IN]-(:Actor {name:'Foo'})" ) # Refresh schema information graph.refresh_schema() chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_direct=True, top_k=TOP_K ) output = chain.run("Who played in Pulp Fiction?") assert len(output) == TOP_K def test_cypher_intermediate_steps() -> None: """Test the returning of the intermediate steps.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) # Delete all nodes in the graph graph.query("MATCH (n) DETACH DELETE n") # Create two nodes and a relationship graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" ) # Refresh schema information graph.refresh_schema() chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_intermediate_steps=True ) output = chain("Who played in Pulp Fiction?") expected_output = " Bruce Willis played in Pulp Fiction." assert output["result"] == expected_output query = output["intermediate_steps"][0]["query"] expected_query = ( "\n\nMATCH (a:Actor)-[:ACTED_IN]->" "(m:Movie {title: 'Pulp Fiction'}) RETURN a.name" ) assert query == expected_query context = output["intermediate_steps"][1]["context"] expected_context = [{"a.name": "Bruce Willis"}] assert context == expected_context def test_cypher_return_direct() -> None: """Test that chain returns direct results.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) # Delete all nodes in the graph graph.query("MATCH (n) DETACH DELETE n") # Create two nodes and a relationship graph.query( "CREATE (a:Actor {name:'Bruce Willis'})" "-[:ACTED_IN]->(:Movie {title: 'Pulp Fiction'})" ) # Refresh schema information graph.refresh_schema() chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_direct=True ) output = chain.run("Who played in Pulp Fiction?") expected_output = [{"a.name": "Bruce Willis"}] assert output == expected_output def test_cypher_return_correct_schema() -> None: """Test that chain returns direct results.""" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) # Delete all nodes in the graph graph.query("MATCH (n) DETACH DELETE n") # Create two nodes and a relationship graph.query( """ CREATE (la:LabelA {property_a: 'a'}) CREATE (lb:LabelB) CREATE (lc:LabelC) MERGE (la)-[:REL_TYPE]-> (lb) MERGE (la)-[:REL_TYPE {rel_prop: 'abc'}]-> (lc) """ ) # Refresh schema information graph.refresh_schema() node_properties = graph.query(node_properties_query) relationships_properties = graph.query(rel_properties_query) relationships = graph.query(rel_query) expected_node_properties = [ { "properties": [{"property": "property_a", "type": "STRING"}], "labels": "LabelA", } ] expected_relationships_properties = [ {"type": "REL_TYPE", "properties": [{"property": "rel_prop", "type": "STRING"}]} ] expected_relationships = [ "(:LabelA)-[:REL_TYPE]->(:LabelB)", "(:LabelA)-[:REL_TYPE]->(:LabelC)", ] assert node_properties == expected_node_properties assert relationships_properties == expected_relationships_properties assert relationships == expected_relationships def test_cypher_save_load() -> None: """Test saving and loading.""" FILE_PATH = "cypher.yaml" url = os.environ.get("NEO4J_URL") username = os.environ.get("NEO4J_USERNAME") password = os.environ.get("NEO4J_PASSWORD") assert url is not None assert username is not None assert password is not None graph = Neo4jGraph( url=url, username=username, password=password, ) chain = GraphCypherQAChain.from_llm( OpenAI(temperature=0), graph=graph, return_direct=True ) chain.save(file_path=FILE_PATH) qa_loaded = load_chain(FILE_PATH, graph=graph) assert qa_loaded == chain