from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate from langchain.pydantic_v1 import BaseModel from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnablePassthrough from langchain.utilities import DuckDuckGoSearchAPIWrapper template = """Answer the users question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model = ChatOpenAI(temperature=0) search = DuckDuckGoSearchAPIWrapper() def retriever(query): return search.run(query) template = """Provide a better search query for \ web search engine to answer the given question, end \ the queries with ’**’. Question: \ {x} Answer:""" rewrite_prompt = ChatPromptTemplate.from_template(template) # Parser to remove the `**` def _parse(text): return text.strip("**") rewriter = rewrite_prompt | ChatOpenAI(temperature=0) | StrOutputParser() | _parse chain = ( { "context": {"x": RunnablePassthrough()} | rewriter | retriever, "question": RunnablePassthrough(), } | prompt | model | StrOutputParser() ) # Add input type for playground class Question(BaseModel): __root__: str chain = chain.with_types(input_type=Question)