import os from datetime import datetime, timedelta from operator import itemgetter from typing import List, Optional, Tuple from dotenv import find_dotenv, load_dotenv from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.prompts.prompt import PromptTemplate from langchain.schema import AIMessage, HumanMessage, format_document from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import ( RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough, ) from langchain.vectorstores.timescalevector import TimescaleVector from pydantic import BaseModel, Field from .load_sample_dataset import load_ts_git_dataset load_dotenv(find_dotenv()) if os.environ.get("TIMESCALE_SERVICE_URL", None) is None: raise Exception("Missing `TIMESCALE_SERVICE_URL` environment variable.") SERVICE_URL = os.environ["TIMESCALE_SERVICE_URL"] LOAD_SAMPLE_DATA = os.environ.get("LOAD_SAMPLE_DATA", False) COLLECTION_NAME = os.environ.get("COLLECTION_NAME", "timescale_commits") OPENAI_MODEL = os.environ.get("OPENAI_MODEL", "gpt-4") partition_interval = timedelta(days=7) if LOAD_SAMPLE_DATA: load_ts_git_dataset( SERVICE_URL, collection_name=COLLECTION_NAME, num_records=500, partition_interval=partition_interval, ) embeddings = OpenAIEmbeddings() vectorstore = TimescaleVector( embedding=embeddings, collection_name=COLLECTION_NAME, service_url=SERVICE_URL, time_partition_interval=partition_interval, ) retriever = vectorstore.as_retriever() # Condense a chat history and follow-up question into a standalone question _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" # noqa: E501 CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) # RAG answer synthesis prompt template = """Answer the question based only on the following context: {context} """ ANSWER_PROMPT = ChatPromptTemplate.from_messages( [ ("system", template), MessagesPlaceholder(variable_name="chat_history"), ("user", "{question}"), ] ) # Conversational Retrieval Chain DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}") def _combine_documents( docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n" ): doc_strings = [format_document(doc, document_prompt) for doc in docs] return document_separator.join(doc_strings) def _format_chat_history(chat_history: List[Tuple[str, str]]) -> List: buffer = [] for human, ai in chat_history: buffer.append(HumanMessage(content=human)) buffer.append(AIMessage(content=ai)) return buffer # User input class ChatHistory(BaseModel): chat_history: List[Tuple[str, str]] = Field(..., extra={"widget": {"type": "chat"}}) question: str start_date: Optional[datetime] end_date: Optional[datetime] metadata_filter: Optional[dict] _search_query = RunnableBranch( # If input includes chat_history, we condense it with the follow-up question ( RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config( run_name="HasChatHistoryCheck" ), # Condense follow-up question and chat into a standalone_question RunnablePassthrough.assign( retriever_query=RunnablePassthrough.assign( chat_history=lambda x: _format_chat_history(x["chat_history"]) ) | CONDENSE_QUESTION_PROMPT | ChatOpenAI(temperature=0, model=OPENAI_MODEL) | StrOutputParser() ), ), # Else, we have no chat history, so just pass through the question RunnablePassthrough.assign(retriever_query=lambda x: x["question"]), ) def get_retriever_with_metadata(x): start_dt = x.get("start_date", None) end_dt = x.get("end_date", None) metadata_filter = x.get("metadata_filter", None) opt = {} if start_dt is not None: opt["start_date"] = start_dt if end_dt is not None: opt["end_date"] = end_dt if metadata_filter is not None: opt["filter"] = metadata_filter v = vectorstore.as_retriever(search_kwargs=opt) return RunnableLambda(itemgetter("retriever_query")) | v _retriever = RunnableLambda(get_retriever_with_metadata) _inputs = RunnableParallel( { "question": lambda x: x["question"], "chat_history": lambda x: _format_chat_history(x["chat_history"]), "start_date": lambda x: x.get("start_date", None), "end_date": lambda x: x.get("end_date", None), "context": _search_query | _retriever | _combine_documents, } ) _datetime_to_string = RunnablePassthrough.assign( start_date=lambda x: x.get("start_date", None).isoformat() if x.get("start_date", None) is not None else None, end_date=lambda x: x.get("end_date", None).isoformat() if x.get("end_date", None) is not None else None, ).with_types(input_type=ChatHistory) chain = ( _datetime_to_string | _inputs | ANSWER_PROMPT | ChatOpenAI(model=OPENAI_MODEL) | StrOutputParser() )