{ "cells": [ { "cell_type": "markdown", "id": "683953b3", "metadata": {}, "source": [ "# Zilliz\n", "\n", ">[Zilliz Cloud](https://zilliz.com/doc/quick_start) is a fully managed service on cloud for `LF AI MilvusĀ®`,\n", "\n", "This notebook shows how to use functionality related to the Zilliz Cloud managed vector database.\n", "\n", "To run, you should have a `Zilliz Cloud` instance up and running. Here are the [installation instructions](https://zilliz.com/cloud)" ] }, { "cell_type": "code", "execution_count": null, "id": "c0c50102-e6ac-4475-a930-49c94ed0bd99", "metadata": { "tags": [] }, "outputs": [], "source": [ "!pip install pymilvus" ] }, { "cell_type": "markdown", "id": "4b25e246-ffe7-4822-a6bf-85d1a120df00", "metadata": {}, "source": [ "We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key." ] }, { "cell_type": "code", "execution_count": null, "id": "d6691489-1ebc-40fa-bc09-b0916903a24d", "metadata": {}, "outputs": [], "source": [ "import os\n", "import getpass\n", "\n", "os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')" ] }, { "cell_type": "code", "execution_count": null, "id": "19a71422", "metadata": {}, "outputs": [], "source": [ "# replace \n", "ZILLIZ_CLOUD_HOSTNAME = \"\" # example: \"in01-17f69c292d4a50a.aws-us-west-2.vectordb.zillizcloud.com\"\n", "ZILLIZ_CLOUD_PORT = \"\" #example: \"19532\"" ] }, { "cell_type": "code", "execution_count": null, "id": "aac9563e", "metadata": {}, "outputs": [], "source": [ "from langchain.embeddings.openai import OpenAIEmbeddings\n", "from langchain.text_splitter import CharacterTextSplitter\n", "from langchain.vectorstores import Milvus\n", "from langchain.document_loaders import TextLoader" ] }, { "cell_type": "code", "execution_count": null, "id": "a3c3999a", "metadata": {}, "outputs": [], "source": [ "from langchain.document_loaders import TextLoader\n", "loader = TextLoader('../../../state_of_the_union.txt')\n", "documents = loader.load()\n", "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n", "docs = text_splitter.split_documents(documents)\n", "\n", "embeddings = OpenAIEmbeddings()" ] }, { "cell_type": "code", "execution_count": null, "id": "dcf88bdf", "metadata": {}, "outputs": [], "source": [ "vector_db = Milvus.from_documents(\n", " docs,\n", " embeddings,\n", " connection_args={\"host\": ZILLIZ_CLOUD_HOSTNAME, \"port\": ZILLIZ_CLOUD_PORT},\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "a8c513ab", "metadata": {}, "outputs": [], "source": [ "docs = vector_db.similarity_search(query)" ] }, { "cell_type": "code", "execution_count": null, "id": "fc516993", "metadata": {}, "outputs": [], "source": [ "docs[0]" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 5 }