{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "code", "source": [ "!pip install elasticsearch langchain" ], "metadata": { "id": "OOiBBjc0Kd-6" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "%env ES_CLOUDID=\n", "%env ES_USER=\n", "%env ES_PASS=\n", "\n", "es_cloudid = os.environ.get(\"ES_CLOUDID\")\n", "es_user = os.environ.get(\"ES_USER\")\n", "es_pass = os.environ.get(\"ES_PASS\")" ], "metadata": { "id": "Wr8unljAKdCh" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Connect to Elasticsearch\n", "es_connection = Elasticsearch(cloud_id=es_cloudid, basic_auth=(es_user, es_pass))" ], "metadata": { "id": "YIDsrBqTKs85" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Define the model ID and input field name (if different from default)\n", "model_id = \"your_model_id\"\n", "input_field = \"your_input_field\" # Optional, only if different from 'text_field'" ], "metadata": { "id": "sfFhnFHOKvbM" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Initialize the ElasticsearchEmbeddings instance\n", "embeddings_generator = ElasticsearchEmbeddings(es_connection, model_id, input_field)" ], "metadata": { "id": "V-pCgqLCKvYs" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Generate embeddings for a list of documents\n", "documents = [\n", " \"This is an example document.\",\n", " \"Another example document to generate embeddings for.\",\n", " ]\n", "document_embeddings = embeddings_generator.embed_documents(documents)" ], "metadata": { "id": "lJg2iRDWKvV_" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Print the generated document embeddings\n", "for i, doc_embedding in enumerate(document_embeddings):\n", " print(f\"Embedding for document {i + 1}: {doc_embedding}\")" ], "metadata": { "id": "R3sYQlh3KvTQ" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Generate an embedding for a single query text\n", "query_text = \"What is the meaning of life?\"\n", "query_embedding = embeddings_generator.embed_query(query_text)" ], "metadata": { "id": "n0un5Vc0KvQd" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Print the generated query embedding\n", "print(f\"Embedding for query: {query_embedding}\")" ], "metadata": { "id": "PANph6pmKvLD" }, "execution_count": null, "outputs": [] } ] }