{ "cells": [ { "cell_type": "markdown", "id": "53049ff5", "metadata": {}, "source": [ "# TiktokenText Splitter\n", "\n", "1. How the text is split: by `tiktoken` tokens\n", "2. How the chunk size is measured: by `tiktoken` tokens" ] }, { "cell_type": "code", "execution_count": 3, "id": "8c73186a", "metadata": {}, "outputs": [], "source": [ "# This is a long document we can split up.\n", "with open('../../../state_of_the_union.txt') as f:\n", " state_of_the_union = f.read()" ] }, { "cell_type": "code", "execution_count": 4, "id": "a1a118b1", "metadata": {}, "outputs": [], "source": [ "from langchain.text_splitter import TokenTextSplitter" ] }, { "cell_type": "code", "execution_count": 5, "id": "ef37c5d3", "metadata": {}, "outputs": [], "source": [ "text_splitter = TokenTextSplitter(chunk_size=10, chunk_overlap=0)" ] }, { "cell_type": "code", "execution_count": 6, "id": "5750228a", "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Madam Speaker, Madam Vice President, our\n" ] } ], "source": [ "texts = text_splitter.split_text(state_of_the_union)\n", "print(texts[0])" ] }, { "cell_type": "code", "execution_count": null, "id": "9a87dc30", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" }, "vscode": { "interpreter": { "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" } } }, "nbformat": 4, "nbformat_minor": 5 }