Commit Graph

144 Commits

Author SHA1 Message Date
Bagatur
1c67db4c18
Move OAI assistants to langchain and add callbacks (#13236) 2023-11-13 17:42:07 -08:00
Bagatur
24386e0860
bump 334, exp 40 (#13211) 2023-11-10 09:43:29 -08:00
Lance Martin
d2e50b3108
Add Chroma multimodal cookbook (#12952)
Pending:
* https://github.com/chroma-core/chroma/pull/1294
* https://github.com/chroma-core/chroma/pull/1293

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-11-10 09:43:10 -08:00
Bagatur
8b2a82b5ce
Bagatur/docs smith context (#13139) 2023-11-09 10:22:49 -08:00
Bagatur
1f85ec34d5
bump 331rc3 exp 39 (#13086) 2023-11-08 13:00:13 -08:00
Bagatur
55aeff6777
oai assistant multiple actions (#13068) 2023-11-08 08:25:37 -08:00
Erick Friis
506f81563f
Update Deps in Experimental (#13029) 2023-11-07 15:15:09 -08:00
Bagatur
cf481c9418
bump exp 38 (#13016) 2023-11-07 11:49:23 -08:00
Bagatur
57e19989f6
Bagatur/oai assistant (#13010) 2023-11-07 11:44:53 -08:00
Bagatur
eee5181b7a
bump 328, exp 37 (#12722) 2023-11-01 10:27:39 -07:00
Noam Gat
14e8c74736
LM Format Enforcer Integration + Sample Notebook (#12625)
## Description

This PR adds support for
[lm-format-enforcer](https://github.com/noamgat/lm-format-enforcer) to
LangChain.

![image](https://raw.githubusercontent.com/noamgat/lm-format-enforcer/main/docs/Intro.webp)

The library is similar to jsonformer / RELLM which are supported in
Langchain, but has several advantages such as
- Batching and Beam search support
- More complete JSON Schema support
- LLM has control over whitespace, improving quality
- Better runtime performance due to only calling the LLM's generate()
function once per generate() call.

The integration is loosely based on the jsonformer integration in terms
of project structure.

## Dependencies

No compile-time dependency was added, but if `lm-format-enforcer` is not
installed, a runtime error will occur if it is trying to be used.

## Tests

Due to the integration modifying the internal parameters of the
underlying huggingface transformer LLM, it is not possible to test
without building a real LM, which requires internet access. So, similar
to the jsonformer and RELLM integrations, the testing is via the
notebook.

## Twitter Handle

[@noamgat](https://twitter.com/noamgat)


Looking forward to hearing feedback!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-31 09:49:01 -07:00
Predrag Gruevski
f94e24dfd7
Install and use ruff format instead of black for code formatting. (#12585)
Best to review one commit at a time, since two of the commits are 100%
autogenerated changes from running `ruff format`:
- Install and use `ruff format` instead of black for code formatting.
- Output of `ruff format .` in the `langchain` package.
- Use `ruff format` in experimental package.
- Format changes in experimental package by `ruff format`.
- Manual formatting fixes to make `ruff .` pass.
2023-10-31 10:53:12 -04:00
Harrison Chase
eb903e211c
bump to 36 (#12487) 2023-10-28 08:51:23 -07:00
Harrison Chase
0ca539eb85
Clean up deprecated agents and update __init__ in experimental (#12231)
Update init paths in experimental
2023-10-27 13:52:50 -04:00
Shorthills AI
25c98dbba9
Fixed some grammatical and Exception types issues (#12015)
Fixed some grammatical issues and Exception types.

@baskaryan , @eyurtsev

---------

Co-authored-by: Sanskar Tanwar <142409040+SanskarTanwarShorthillsAI@users.noreply.github.com>
Co-authored-by: UpneetShorthillsAI <144228282+UpneetShorthillsAI@users.noreply.github.com>
Co-authored-by: HarshGuptaShorthillsAI <144897987+HarshGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: AdityaKalraShorthillsAI <143726711+AdityaKalraShorthillsAI@users.noreply.github.com>
Co-authored-by: SakshiShorthillsAI <144228183+SakshiShorthillsAI@users.noreply.github.com>
2023-10-26 21:12:38 -04:00
Bagatur
c6a733802b
bump 324 and 35 (#12352) 2023-10-26 10:10:26 -07:00
Nikhil Jha
dff24285ea
Comprehend Moderation 0.2 (#11730)
This PR replaces the previous `Intent` check with the new `Prompt
Safety` check. The logic and steps to enable chain moderation via the
Amazon Comprehend service, allowing you to detect and redact PII, Toxic,
and Prompt Safety information in the LLM prompt or answer remains
unchanged.
This implementation updates the code and configuration types with
respect to `Prompt Safety`.


### Usage sample

```python
from langchain_experimental.comprehend_moderation import (BaseModerationConfig, 
                                 ModerationPromptSafetyConfig, 
                                 ModerationPiiConfig, 
                                 ModerationToxicityConfig
)

pii_config = ModerationPiiConfig(
    labels=["SSN"],
    redact=True,
    mask_character="X"
)

toxicity_config = ModerationToxicityConfig(
    threshold=0.5
)

prompt_safety_config = ModerationPromptSafetyConfig(
    threshold=0.5
)

moderation_config = BaseModerationConfig(
    filters=[pii_config, toxicity_config, prompt_safety_config]
)

comp_moderation_with_config = AmazonComprehendModerationChain(
    moderation_config=moderation_config, #specify the configuration
    client=comprehend_client,            #optionally pass the Boto3 Client
    verbose=True
)

template = """Question: {question}

Answer:"""

prompt = PromptTemplate(template=template, input_variables=["question"])

responses = [
    "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", 
    "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here."
]
llm = FakeListLLM(responses=responses)

llm_chain = LLMChain(prompt=prompt, llm=llm)

chain = ( 
    prompt 
    | comp_moderation_with_config 
    | {llm_chain.input_keys[0]: lambda x: x['output'] }  
    | llm_chain 
    | { "input": lambda x: x['text'] } 
    | comp_moderation_with_config 
)

try:
    response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"})
except Exception as e:
    print(str(e))
else:
    print(response['output'])

```

### Output

```python
> Entering new AmazonComprehendModerationChain chain...
Running AmazonComprehendModerationChain...
Running pii Validation...
Running toxicity Validation...
Running prompt safety Validation...

> Finished chain.


> Entering new AmazonComprehendModerationChain chain...
Running AmazonComprehendModerationChain...
Running pii Validation...
Running toxicity Validation...
Running prompt safety Validation...

> Finished chain.
Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876.
```

---------

Co-authored-by: Jha <nikjha@amazon.com>
Co-authored-by: Anjan Biswas <anjanavb@amazon.com>
Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 09:42:18 -07:00
Bagatur
286a29a49e
bump 322 and 34 (#12228) 2023-10-24 13:52:17 -07:00
Erick Friis
95ae40ff90
Fix Anthropic Functions ainvoke (#12215)
Removes custom `NotImplementedError` in experimental anthropic
functions, allowing it to fallback on default `ainvoke` implementation.
2023-10-24 10:07:01 -07:00
Bagatur
963ff93476
bump 321 (#12161) 2023-10-23 12:49:38 -04:00
Harrison Chase
ee69116761
move csv agent to langchain experimental (#12113) 2023-10-21 10:26:02 -07:00
Harrison Chase
03bf6ef473
add missing init files (#12114) 2023-10-21 10:25:50 -07:00
Bagatur
85302a9ec1
Add CI check that integration tests compile (#12090) 2023-10-21 10:52:18 -04:00
Bagatur
35c7c1f050
bump 317 (#11986) 2023-10-18 09:25:18 -07:00
Predrag Gruevski
392df7b2e3
Type hints on varargs and kwargs that take anything should be Any. (#11950)
Type hinting `*args` as `List[Any]` means that each positional argument
should be a list. Type hinting `**kwargs` as `Dict[str, Any]` means that
each keyword argument should be a dict of strings.

This is almost never what we actually wanted, and doesn't seem to be
what we want in any of the cases I'm replacing here.
2023-10-17 21:31:44 -04:00
Predrag Gruevski
dcd0392423
Upgrade to newer black (23.10) and ruff (first 0.1.x!) versions. (#11944)
Minor lint dependency version upgrade to pick up latest functionality.

Ruff's new v0.1 version comes with lots of nice features, like
fix-safety guarantees and a preview mode for not-yet-stable features:
https://astral.sh/blog/ruff-v0.1.0
2023-10-17 17:24:51 -04:00
maks-operlejn-ds
42dcc502c7
Anonymizer small fixes (#11915) 2023-10-17 10:27:29 -07:00
Bagatur
ba0d729961
bump 316 (#11928) 2023-10-17 09:47:57 -07:00
Predrag Gruevski
7c0f1bf23f
Upgrade experimental package dependencies and use Poetry 1.6.1. (#11339)
Part of upgrading our CI to use Poetry 1.6.1.
2023-10-16 21:13:31 -04:00
Bagatur
25b1d65305
bump 315 (#11850) 2023-10-16 00:50:54 -07:00
Eugene Yurtsev
0d37b4c27d
Add python,pandas,xorbits,spark agents to experimental (#11774)
See for contex
https://github.com/langchain-ai/langchain/discussions/11680
2023-10-13 17:36:44 -04:00
Erick Friis
1861cc7100
General anthropic functions, steps towards experimental integration tests (#11727)
To match change in js here
https://github.com/langchain-ai/langchainjs/pull/2892

Some integration tests need a bit more work in experimental:
![Screenshot 2023-10-12 at 12 02 49
PM](https://github.com/langchain-ai/langchain/assets/9557659/262d7d22-c405-40e9-afef-669e8d585307)

Pretty sure the sqldatabase ones are an actual regression or change in
interface because it's returning a placeholder.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-13 09:48:24 -07:00
Bagatur
9c0584be74
bump 313 (#11718) 2023-10-12 09:48:54 -07:00
Suresh Kumar Ponnusamy
70f7558db2
langchain-experimental: Add allow_list support in experimental/data_anonymizer (#11597)
- **Description:** Add allow_list support in langchain experimental
data-anonymizer package
  - **Issue:** no
  - **Dependencies:** no
  - **Tag maintainer:** @hwchase17
  - **Twitter handle:**
2023-10-11 14:50:41 -07:00
Kwanghoon Choi
fbb82608cd
Fixed a bug in reporting Python code validation (#11522)
- **Description:** fixed a bug in pal-chain when it reports Python
    code validation errors. When node.func does not have any ids, the
    original code tried to print node.func.id in raising ValueError.
- **Issue:** n/a,
- **Dependencies:** no dependencies,
- **Tag maintainer:** @hazzel-cn, @eyurtsev
- **Twitter handle:** @lazyswamp

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-11 14:34:28 -07:00
Bagatur
7232e082de
bump 312 (#11621) 2023-10-10 12:34:49 -07:00
Eugene Yurtsev
c9bce5bbfb
Add version to langchain_experimental (#11613)
Add version to langchain experimental
2023-10-10 11:17:41 -04:00
maks-operlejn-ds
f64522fbaf
Reset deanonymizer mapping (#11559)
@hwchase17 @baskaryan
2023-10-09 11:11:05 -07:00
maks-operlejn-ds
b14b65d62a
Support all presidio entities (#11558)
https://microsoft.github.io/presidio/supported_entities/

@baskaryan @hwchase17
2023-10-09 11:10:46 -07:00
maks-operlejn-ds
4d62def9ff
Better deanonymizer matching strategy (#11557)
@baskaryan, @hwchase17
2023-10-09 11:10:29 -07:00
Bagatur
53887242a1
bump 310 (#11486) 2023-10-06 09:49:10 -07:00
Qihui Xie
57ade13b2b
fix llm_inputs duplication problem in intermediate_steps in SQLDatabaseChain (#10279)
Use `.copy()` to fix the bug that the first `llm_inputs` element is
overwritten by the second `llm_inputs` element in `intermediate_steps`.

***Problem description:***
In [line 127](

c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L127C17-L127C17)),
the `llm_inputs` of the sql generation step is appended as the first
element of `intermediate_steps`:
```
            intermediate_steps.append(llm_inputs)  # input: sql generation
```

However, `llm_inputs` is a mutable dict, it is updated in [line
179](https://github.com/langchain-ai/langchain/blob/master/libs/experimental/langchain_experimental/sql/base.py#L179)
for the final answer step:
```
                llm_inputs["input"] = input_text
```
Then, the updated `llm_inputs` is appended as another element of
`intermediate_steps` in [line
180](c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L180)):
```
                intermediate_steps.append(llm_inputs)  # input: final answer
```

As a result, the final `intermediate_steps` returned in [line
189](c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L189C43-L189C43))
actually contains two same `llm_inputs` elements, i.e., the `llm_inputs`
for the sql generation step overwritten by the one for final answer step
by mistake. Users are not able to get the actual `llm_inputs` for the
sql generation step from `intermediate_steps`

Simply calling `.copy()` when appending `llm_inputs` to
`intermediate_steps` can solve this problem.
2023-10-05 21:32:08 -07:00
Bagatur
a3a2ce623e Revise vowpal_wabbit notebook 2023-10-05 18:18:19 -07:00
Bagatur
8fafa1af91 merge 2023-10-05 18:09:35 -07:00
olgavrou
3b07c0cf3d
RL Chain with VowpalWabbit (#10242)
- Description: This PR adds a new chain `rl_chain.PickBest` for learned
prompt variable injection, detailed description and usage can be found
in the example notebook added. It essentially adds a
[VowpalWabbit](https://github.com/VowpalWabbit/vowpal_wabbit) layer
before the llm call in order to learn or personalize prompt variable
selections.

Most of the code is to make the API simple and provide lots of defaults
and data wrangling that is needed to use Vowpal Wabbit, so that the user
of the chain doesn't have to worry about it.

- Dependencies:
[vowpal-wabbit-next](https://pypi.org/project/vowpal-wabbit-next/),
     - sentence-transformers (already a dep)
     - numpy (already a dep)
  - tagging @ataymano who contributed to this chain
  - Tag maintainer: @baskaryan
  - Twitter handle: @olgavrou


Added example notebook and unit tests
2023-10-05 18:07:22 -07:00
maks-operlejn-ds
2aae1102b0
Instance anonymization (#10501)
### Description

Add instance anonymization - if `John Doe` will appear twice in the
text, it will be treated as the same entity.
The difference between `PresidioAnonymizer` and
`PresidioReversibleAnonymizer` is that only the second one has a
built-in memory, so it will remember anonymization mapping for multiple
texts:

```
>>> anonymizer = PresidioAnonymizer()
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Brett Russell. Hi Brett Russell!'
```
```
>>> anonymizer = PresidioReversibleAnonymizer()
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
```

### Twitter handle
@deepsense_ai / @MaksOpp

### Tag maintainer
@baskaryan @hwchase17 @hinthornw

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-05 11:23:02 -07:00
Eugene Yurtsev
fcccde406d
Add SymbolicMathChain to experiment in preparation for deprecation (#11129)
Move symbolic math chain to experimental
2023-10-05 13:54:43 -04:00
Bagatur
8b6b8bf68c
bump 309 (#11443) 2023-10-05 09:29:14 -07:00
Predrag Gruevski
c9986bc3a9
Tweak type hints to match dependency's behavior. (#11355)
Needs #11353 to merge first, and a new `langchain` to be published with
those changes.
2023-10-04 22:36:58 -04:00
Bagatur
16a80779b9
bump 307 (#11380) 2023-10-04 10:03:17 -04:00