This adds implementation of MMR search in pinecone; and I have two
semi-related observations about this vector store class:
- Maybe we should also have a
`similarity_search_by_vector_returning_embeddings` like in supabase, but
it's not in the base `VectorStore` class so I didn't implement
- Talking about the base class, there's
`similarity_search_with_relevance_scores`, but in pinecone it is called
`similarity_search_with_score`; maybe we should consider renaming it to
align with other `VectorStore` base and sub classes (or add that as an
alias for backward compatibility)
#### Who can review?
Tag maintainers/contributors who might be interested:
- VectorStores / Retrievers / Memory - @dev2049
# Introduces embaas document extraction api endpoints
In this PR, we add support for embaas document extraction endpoints to
Text Embedding Models (with LLMs, in different PRs coming). We currently
offer the MTEB leaderboard top performers, will continue to add top
embedding models and soon add support for customers to deploy thier own
models. Additional Documentation + Infomation can be found
[here](https://embaas.io).
While developing this integration, I closely followed the patterns
established by other langchain integrations. Nonetheless, if there are
any aspects that require adjustments or if there's a better way to
present a new integration, let me know! :)
Additionally, I fixed some docs in the embeddings integration.
Related PR: #5976
#### Who can review?
DataLoaders
- @eyurtsev
This creates a new kind of text splitter for markdown files.
The user can supply a set of headers that they want to split the file
on.
We define a new text splitter class, `MarkdownHeaderTextSplitter`, that
does a few things:
(1) For each line, it determines the associated set of user-specified
headers
(2) It groups lines with common headers into splits
See notebook for example usage and test cases.
Inspired by the filtering capability available in ChromaDB, added the
same functionality to the FAISS vectorestore as well. Since FAISS does
not have an inbuilt method of filtering used the approach suggested in
this [thread](https://github.com/facebookresearch/faiss/issues/1079)
Langchain Issue inspiration:
https://github.com/hwchase17/langchain/issues/4572
- [x] Added filtering capability to semantic similarly and MMR
- [x] Added test cases for filtering in
`tests/integration_tests/vectorstores/test_faiss.py`
#### Who can review?
Tag maintainers/contributors who might be interested:
VectorStores / Retrievers / Memory
- @dev2049
- @hwchase17
This PR updates the Vectara integration (@hwchase17 ):
* Adds reuse of requests.session to imrpove efficiency and speed.
* Utilizes Vectara's low-level API (instead of standard API) to better
match user's specific chunking with LangChain
* Now add_texts puts all the texts into a single Vectara document so
indexing is much faster.
* updated variables names from alpha to lambda_val (to be consistent
with Vectara docs) and added n_context_sentence so it's available to use
if needed.
* Updates to documentation and tests
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Unstructured XML Loader
Adds an `UnstructuredXMLLoader` class for .xml files. Works with
unstructured>=0.6.7. A plain text representation of the text with the
XML tags will be available under the `page_content` attribute in the
doc.
### Testing
```python
from langchain.document_loaders import UnstructuredXMLLoader
loader = UnstructuredXMLLoader(
"example_data/factbook.xml",
)
docs = loader.load()
```
## Who can review?
@hwchase17
@eyurtsev
Added AwaDB vector store, which is a wrapper over the AwaDB, that can be
used as a vector storage and has an efficient similarity search. Added
integration tests for the vector store
Added jupyter notebook with the example
Delete a unneeded empty file and resolve the
conflict(https://github.com/hwchase17/langchain/pull/5886)
Please check, Thanks!
@dev2049
@hwchase17
---------
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: ljeagle <vincent_jieli@yeah.net>
Co-authored-by: vincent <awadb.vincent@gmail.com>
<!--
Fixed a simple typo on
https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/vectorstore.html
where the word "use" was missing.
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
"One Retriever to merge them all, One Retriever to expose them, One
Retriever to bring them all and in and process them with Document
formatters."
Hi @dev2049! Here bothering people again!
I'm using this simple idea to deal with merging the output of several
retrievers into one.
I'm aware of DocumentCompressorPipeline and
ContextualCompressionRetriever but I don't think they allow us to do
something like this. Also I was getting in trouble to get the pipeline
working too. Please correct me if i'm wrong.
This allow to do some sort of "retrieval" preprocessing and then using
the retrieval with the curated results anywhere you could use a
retriever.
My use case is to generate diff indexes with diff embeddings and sources
for a more colorful results then filtering them with one or many
document formatters.
I saw some people looking for something like this, here:
https://github.com/hwchase17/langchain/issues/3991
and something similar here:
https://github.com/hwchase17/langchain/issues/5555
This is just a proposal I know I'm missing tests , etc. If you think
this is a worth it idea I can work on tests and anything you want to
change.
Let me know!
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
#### Add start index to metadata in TextSplitter
- Modified method `create_documents` to track start position of each
chunk
- The `start_index` is included in the metadata if the `add_start_index`
parameter in the class constructor is set to `True`
This enables referencing back to the original document, particularly
useful when a specific chunk is retrieved.
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
@eyurtsev @agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
<!-- Remove if not applicable -->
Fixes # (issue)
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: rlm <pexpresss31@gmail.com>
- Added `SingleStoreDB` vector store, which is a wrapper over the
SingleStore DB database, that can be used as a vector storage and has an
efficient similarity search.
- Added integration tests for the vector store
- Added jupyter notebook with the example
@dev2049
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
### Summary
Adds an `UnstructuredCSVLoader` for loading CSVs. One advantage of using
`UnstructuredCSVLoader` relative to the standard `CSVLoader` is that if
you use `UnstructuredCSVLoader` in `"elements"` mode, an HTML
representation of the table will be available in the metadata.
#### Who can review?
@hwchase17
@eyurtsev
Hi! I just added an example of how to use a custom scraping function
with the sitemap loader. I recently used this feature and had to dig in
the source code to find it. I thought it might be useful to other devs
to have an example in the Jupyter Notebook directly.
I only added the example to the documentation page.
@eyurtsev I was not able to run the lint. Please let me know if I have
to do anything else.
I know this is a very small contribution, but I hope it will be
valuable. My Twitter handle is @web3Dav3.
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
This introduces the `YoutubeAudioLoader`, which will load blobs from a
YouTube url and write them. Blobs are then parsed by
`OpenAIWhisperParser()`, as show in this
[PR](https://github.com/hwchase17/langchain/pull/5580), but we extend
the parser to split audio such that each chuck meets the 25MB OpenAI
size limit. As shown in the notebook, this enables a very simple UX:
```
# Transcribe the video to text
loader = GenericLoader(YoutubeAudioLoader([url],save_dir),OpenAIWhisperParser())
docs = loader.load()
```
Tested on full set of Karpathy lecture videos:
```
# Karpathy lecture videos
urls = ["https://youtu.be/VMj-3S1tku0"
"https://youtu.be/PaCmpygFfXo",
"https://youtu.be/TCH_1BHY58I",
"https://youtu.be/P6sfmUTpUmc",
"https://youtu.be/q8SA3rM6ckI",
"https://youtu.be/t3YJ5hKiMQ0",
"https://youtu.be/kCc8FmEb1nY"]
# Directory to save audio files
save_dir = "~/Downloads/YouTube"
# Transcribe the videos to text
loader = GenericLoader(YoutubeAudioLoader(urls,save_dir),OpenAIWhisperParser())
docs = loader.load()
```
# Scores in Vectorestores' Docs Are Explained
Following vectorestores can return scores with similar documents by
using `similarity_search_with_score`:
- chroma
- docarray_hnsw
- docarray_in_memory
- faiss
- myscale
- qdrant
- supabase
- vectara
- weaviate
However, in documents, these scores were either not explained at all or
explained in a way that could lead to misunderstandings (e.g., FAISS).
For instance in FAISS document: if we consider the score returned by the
function as a similarity score, we understand that a document returning
a higher score is more similar to the source document. However, since
the scores returned by the function are distance scores, we should
understand that smaller scores correspond to more similar documents.
For the libraries other than Vectara, I wrote the scores they use by
investigating from the source libraries. Since I couldn't be certain
about the score metric used by Vectara, I didn't make any changes in its
documentation. The links mentioned in Vectara's documentation became
broken due to updates, so I replaced them with working ones.
VectorStores / Retrievers / Memory
- @dev2049
my twitter: [berkedilekoglu](https://twitter.com/berkedilekoglu)
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# OpenAIWhisperParser
This PR creates a new parser, `OpenAIWhisperParser`, that uses the
[OpenAI Whisper
model](https://platform.openai.com/docs/guides/speech-to-text/quickstart)
to perform transcription of audio files to text (`Documents`). Please
see the notebook for usage.
# Token text splitter for sentence transformers
The current TokenTextSplitter only works with OpenAi models via the
`tiktoken` package. This is not clear from the name `TokenTextSplitter`.
In this (first PR) a token based text splitter for sentence transformer
models is added. In the future I think we should work towards injecting
a tokenizer into the TokenTextSplitter to make ti more flexible.
Could perhaps be reviewed by @dev2049
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Created fix for 5475
Currently in PGvector, we do not have any function that returns the
instance of an existing store. The from_documents always adds embeddings
and then returns the store. This fix is to add a function that will
return the instance of an existing store
Also changed the jupyter example for PGVector to show the example of
using the function
<!-- Remove if not applicable -->
Fixes # 5475
#### Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#### Who can review?
@dev2049
@hwchase17
Tag maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: rajib76 <rajib76@yahoo.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Your PR Title (What it does)
Fixes the pgvector python example notebook : one of the variables was
not referencing anything
## Before submitting
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
VectorStores / Retrievers / Memory
- @dev2049
# Implements support for Personal Access Token Authentication in the
ConfluenceLoader
Fixes#5191
Implements a new optional parameter for the ConfluenceLoader: `token`.
This allows the use of personal access authentication when using the
on-prem server version of Confluence.
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@eyurtsev @Jflick58
Twitter Handle: felipe_yyc
---------
Co-authored-by: Felipe <feferreira@ea.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Unstructured Excel Loader
Adds an `UnstructuredExcelLoader` class for `.xlsx` and `.xls` files.
Works with `unstructured>=0.6.7`. A plain text representation of the
Excel file will be available under the `page_content` attribute in the
doc. If you use the loader in `"elements"` mode, an HTML representation
of the Excel file will be available under the `text_as_html` metadata
key. Each sheet in the Excel document is its own document.
### Testing
```python
from langchain.document_loaders import UnstructuredExcelLoader
loader = UnstructuredExcelLoader(
"example_data/stanley-cups.xlsx",
mode="elements"
)
docs = loader.load()
```
## Who can review?
@hwchase17
@eyurtsev
# Create elastic_vector_search.ElasticKnnSearch class
This extends `langchain/vectorstores/elastic_vector_search.py` by adding
a new class `ElasticKnnSearch`
Features:
- Allow creating an index with the `dense_vector` mapping compataible
with kNN search
- Store embeddings in index for use with kNN search (correct mapping
creates HNSW data structure)
- Perform approximate kNN search
- Perform hybrid BM25 (`query{}`) + kNN (`knn{}`) search
- perform knn search by either providing a `query_vector` or passing a
hosted `model_id` to use query_vector_builder to automatically generate
a query_vector at search time
Connection options
- Using `cloud_id` from Elastic Cloud
- Passing elasticsearch client object
search options
- query
- k
- query_vector
- model_id
- size
- source
- knn_boost (hybrid search)
- query_boost (hybrid search)
- fields
This also adds examples to
`docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb`
Fixes # [5346](https://github.com/hwchase17/langchain/issues/5346)
cc: @dev2049
-->
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Lint sphinx documentation and fix broken links
This PR lints multiple warnings shown in generation of the project
documentation (using "make docs_linkcheck" and "make docs_build").
Additionally documentation internal links to (now?) non-existent files
are modified to point to existing documents as it seemed the new correct
target.
The documentation is not updated content wise.
There are no source code changes.
Fixes # (issue)
- broken documentation links to other files within the project
- sphinx formatting (linting)
## Before submitting
No source code changes, so no new tests added.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# docs: `ecosystem_integrations` update 3
Next cycle of updating the `ecosystem/integrations`
* Added an integration `template` file
* Added missed integration files
* Fixed several document_loaders/notebooks
## Who can review?
Is it possible to assign somebody to review PRs on docs? Thanks.