Commit Graph

713 Commits

Author SHA1 Message Date
Arpan Pokharel
f8bca156d4
Add where filter in weaviate similarity search with score (#9978)
- Description: Add where filter in weaviate similarity search with score
  - Issue: #9853 
  - Dependencies: -
  - Tag maintainer: -
  - Twitter handle: -
2023-09-01 16:09:19 -07:00
Leonid Kuligin
30239b3025
added support for inference from Model Garden (#9367)
#8850

---------

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-09-01 15:58:21 -07:00
Benjamin Matson
58d7d86e51
feat: add bedrock chat model (#8017)
Replace this comment with:
  - Description: Add Bedrock implementation of Anthropic Claude for Chat
  - Tag maintainer: @hwchase17, @baskaryan
  - Twitter handle: @bwmatson

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-01 13:16:57 -07:00
Massimiliano Pronesti
a7c9bd30d4
feat(llms): add missing params to huggingface text-generation (#9724)
This small PR aims at supporting the following missing parameters in the
`HuggingfaceTextGen` LLM:
- `return_full_text` - sometimes useful for completion tasks
- `do_sample` - quite handy to control the randomness of the model.
- `watermark`

@hwchase17 @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-01 13:16:27 -07:00
KyrianC
491089754d
EdenAI LLM update. Add models name option (#8963)
This PR follows the **Eden AI (LLM + embeddings) integration**. #8633 

We added an optional parameter to choose different AI models for
providers (like 'text-bison' for provider 'google', 'text-davinci-003'
for provider 'openai', etc.).

Usage:

```python
llm = EdenAI(
    feature="text",
    provider="google",
    params={
        "model": "text-bison",  # new
        "temperature": 0.2,
        "max_tokens": 250,
    },
)

```

You can also change the provider + model after initialization
```python
llm = EdenAI(
    feature="text",
    provider="google",
    params={
        "temperature": 0.2,
        "max_tokens": 250,
    },
)

prompt = """
hi 
"""

llm(prompt, providers='openai', model='text-davinci-003')  # change provider & model
```

The jupyter notebook as been updated with an example well.


Ping: @hwchase17, @baskaryan

---------

Co-authored-by: RedhaWassim <rwasssim@gmail.com>
Co-authored-by: sam <melaine.samy@gmail.com>
2023-09-01 12:11:33 -07:00
maks-operlejn-ds
b5a74fb973
Temporarily remove language selection (#10097)
Adapting Microsoft Presidio to other languages requires a bit more work,
so for now it will be good idea to remove the language option to choose,
so as not to cause errors and confusion.
https://microsoft.github.io/presidio/analyzer/languages/

I will handle different languages after the weekend 😄
2023-09-01 11:30:48 -07:00
Bagatur
71c418725f
index rename delete_mode -> cleanup (#10103) 2023-09-01 11:12:10 -07:00
Nuno Campos
427f696fb0
Nc/runnables seqmap tags (#9753) 2023-09-01 18:53:10 +01:00
Harrison Chase
d7bf7dc412
add repr for not serializable (#10071)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-09-01 09:18:32 -07:00
Bagatur
355ff09cce
bump 279 (#10098) 2023-09-01 08:49:26 -07:00
Pihplipe Oegr
3dafbd852e
Add sqlite-vss as a vector database (#10047)
This adds sqlite-vss as an option for a vector database. Contains the
code and a few tests. Tests are passing and the library sqlite-vss is
added as optional as explained in the contributing guidelines. I
adjusted the code for lint/black/ and mypy. It looks that everything is
currently passing.

Adding sqlite-vss was mentioned in this issue:
https://github.com/langchain-ai/langchain/issues/1019.
Also mentioned here in the sqlite-vss repo for the curious:
https://github.com/asg017/sqlite-vss/issues/66

Maintainer tag: @baskaryan

---------

Co-authored-by: Philippe Oger <philippe.oger@adevinta.com>
2023-09-01 08:36:34 -07:00
KyrianC
c7a5504789
Add EdenAI Tools (#9764)
This PR follows the Eden AI (LLM + embeddings) integration. #8633

We added different Tools to empower agents with new capabilities :

- text: explicit content detection

- image: explicit content detection

- image: object detection

- OCR: invoice parsing

- OCR: ID parsing

- audio: speech to text

- audio: text to speech

 
We plan to add more in the future (like translation, language detection,
+ others).


Usage:

```python
llm=EdenAI(feature="text",provider="openai", params={"temperature" : 0.2,"max_tokens" : 250})

tools = [
    EdenAiTextModerationTool(providers=["openai"],language="en"),
    EdenAiObjectDetectionTool(providers=["google","api4ai"]),
    EdenAiTextToSpeechTool(providers=["amazon"],language="en",voice="MALE"),
    EdenAiExplicitImageTool(providers=["amazon","google"]),
    EdenAiSpeechToTextTool(providers=["amazon"]),
    EdenAiParsingIDTool(providers=["amazon","klippa"],language="en"),
    EdenAiParsingInvoiceTool(providers=["amazon","google"],language="en"),
]

agent_chain = initialize_agent(
    tools,
    llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True,
    return_intermediate_steps=True,
)

result = agent_chain(""" i have this text : 'i want to slap you' 
                   first : i want to know if this text contains explicit content or not .
                   second : if it does contain explicit content i want to know what is the explicit content in this text, 
                   third : i want to make the text into speech .
                   if there is URL in the observations , you will always put it in the output (final answer) .
                   """)
```

output: 
>  Entering new AgentExecutor chain...
> I need to extract the information from the ID and then convert it to
text and then to speech
> Action: edenai_identity_parsing
> Action Input:
"https://www.citizencard.com/images/citizencard-uk-id-card-2023.jpg"
> Observation: last_name : 
>   value : ANGELA
> given_names : 
>   value : GREENE
> birth_place : 
> birth_date : 
>   value : 2000-11-09
> issuance_date : 
> expire_date : 
> document_id : 
> issuing_state : 
> address : 
> age : 
> country : 
> document_type : 
>   value : DRIVER LICENSE FRONT
> gender : 
> image_id : 
> image_signature : 
> mrz : 
> nationality : 
> Thought: I now need to convert the information to text and then to
speech
> Action: edenai_text_to_speech
> Action Input: "Welcome Angela Greene!"
> Observation:
https://d14uq1pz7dzsdq.cloudfront.net/0c494819-0bbc-4433-bfa4-6e99bd9747ea_.mp3?Expires=1693316851&Signature=YcMoVQgPuIMEOuSpFuvhkFM8JoBMSoGMcZb7MVWdqw7JEf5~67q9dEI90o5todE5mYXB5zSYoib6rGrmfBl4Rn5~yqDwZ~Tmc24K75zpQZIEyt5~ZSnHuXy4IFWGmlIVuGYVGMGKxTGNeCRNUXDhT6TXGZlr4mwa79Ei1YT7KcNyc1dsTrYB96LphnsqOERx4X9J9XriSwxn70X8oUPFfQmLcitr-syDhiwd9Wdpg6J5yHAJjf657u7Z1lFTBMoXGBuw1VYmyno-3TAiPeUcVlQXPueJ-ymZXmwaITmGOfH7HipZngZBziofRAFdhMYbIjYhegu5jS7TxHwRuox32A__&Key-Pair-Id=K1F55BTI9AHGIK
> Thought: I now know the final answer
> Final Answer:
https://d14uq1pz7dzsdq.cloudfront.net/0c494819-0bbc-4433-bfa4-6e99bd9747ea_.mp3?Expires=1693316851&Signature=YcMoVQgPuIMEOuSpFuvhkFM8JoBMSoGMcZb7MVWdqw7JEf5~67q9dEI90o5todE5mYXB5zSYoib6rGrmfBl4Rn5~yqDwZ~Tmc24K75zpQZIEyt5~ZSnHuXy4IFWGmlIVuGYVGMGKxTGNeCRNUXDhT6TXGZlr4mwa79Ei1YT7KcNyc1dsTrYB96LphnsqOERx4X9J9XriSwxn70X8oUPFfQmLcitr-syDhiwd9Wdpg6J5y
> 
>  Finished chain.

Other examples are available in the jupyter notebook.


This PR is made in parallel with  EdenAI LLM update #8963 
I apologize for the messy PR. While working in implementing Tools we
realized there was a few problems we needed to fix on LLM as well.

Ping: @hwchase17, @baskaryan

---------

Co-authored-by: RedhaWassim <rwasssim@gmail.com>
2023-09-01 08:26:56 -07:00
Nuno Campos
5569385ee1 Lint 2023-09-01 15:53:54 +01:00
Nuno Campos
e17275ee57 Add root run wrapping call to RunnableEach() 2023-09-01 15:51:29 +01:00
Nuno Campos
63306899a2 PR review suggestions 2023-09-01 15:50:04 +01:00
Nuno Campos
7966af1e9c Lint 2023-09-01 15:50:04 +01:00
Nuno Campos
4c0e1e501c Re-implement retry, adding a root run, and implement return_exception for batch() and abatch() 2023-09-01 15:50:04 +01:00
Nuno Campos
0eba80912f Lint 2023-09-01 15:49:31 +01:00
Nuno Campos
af2e4ce2cd Use a non-inheritable tag 2023-09-01 15:49:31 +01:00
Nuno Campos
85088dc5df Lint 2023-09-01 15:49:31 +01:00
Nuno Campos
4eecf90f33 Lint 2023-09-01 15:49:31 +01:00
Nuno Campos
2242e2160f Lint 2023-09-01 15:49:31 +01:00
Nuno Campos
b2ac835466 Add .with_retry() to Runnables 2023-09-01 15:49:31 +01:00
Nuno Campos
81ebcc161e Lint 2023-09-01 15:46:53 +01:00
Nuno Campos
fc42726ea0 Styling 2023-09-01 15:32:43 +01:00
Nuno Campos
897f791940 Remove run_id from patch 2023-09-01 15:32:37 +01:00
William Fu-Hinthorn
4d7cd6db5f add cm 2023-09-01 15:32:37 +01:00
Nuno Campos
f9a845b382 Lint 2023-09-01 15:31:08 +01:00
Nuno Campos
06e89c1caa Lint 2023-09-01 15:31:08 +01:00
Nuno Campos
738d93215d Allow patching run_name and max_concurrency 2023-09-01 15:31:08 +01:00
Nuno Campos
9a07032055 Lint 2023-09-01 15:31:08 +01:00
Nuno Campos
5426712311 Adjust merge logic 2023-09-01 15:31:08 +01:00
Nuno Campos
f95bd0bcd9 Fix issue 2023-09-01 15:31:08 +01:00
Nuno Campos
f69155b4f7 Add run_id, run_name to RunnableConfig 2023-09-01 15:31:08 +01:00
Nuno Campos
a3c69cf41d Add .with_config() method to Runnables which allows binding any config values to a Runnable 2023-09-01 15:31:08 +01:00
jmhayes3
324c86acd5
fix typo in web_research.py (#10076)
fix spelling
2023-08-31 22:19:03 -07:00
Davide Menini
3f8f3de28e
fix (parsers/json): do not escape double quotes if already escaped (#9916)
This PR fixes an issues I found when upgrading to a more recent version
of Langchain. I was using 0.0.142 before, and this issue popped up
already when the `_custom_parser` was added to `output_parsers/json`.

Anyway, the issue is that the parser tries to escape quotes when they
are double-escaped (e.g. `\\"`), leading to OutputParserException.
This is particularly undesired in my app, because I have an Agent that
uses a single input Tool, which expects as input a JSON string with the
structure:
```python
{
    "foo": string,
    "bar": string
}
```
The LLM (GPT3.5) response is (almost) always something like
`"action_input": "{\\"foo\\": \\"bar\\", \\"bar\\": \\"foo\\"}"` and
since the upgrade this is not correctly parsed.

---------

Co-authored-by: taamedag <Davide.Menini@swisscom.com>
2023-08-31 17:11:52 -07:00
Harrison Chase
566ce06f4a
add async support for tools (#10058) 2023-08-31 16:52:05 -07:00
Jiří Moravčík
86646ec555
feat: Add ApifyWrapper class (#10067)
If you look at documentation
https://python.langchain.com/docs/integrations/tools/apify (or the
actual file
https://github.com/langchain-ai/langchain/blob/master/docs/extras/integrations/tools/apify.ipynb
), there's a class `ApifyWrapper` mentioned. It seems it got lost in
some refactoring, i.e. it does not exist in the codebase ATM.

I just propose to add it back.
It would fix issues e.g.
https://github.com/langchain-ai/langchain/issues/8307 or
https://github.com/langchain-ai/langchain/issues/8201

To add, Apify is a wanted integration, e.g. see
https://twitter.com/hwchase17/status/1695490295914545626 or
https://twitter.com/hwchase17/status/1695470765343461756

Lastly, I offer taking ownership of the Apify-related parts of the
codebase, so you can tag me if anything is needed.
2023-08-31 15:47:44 -07:00
Robert Perrotta
02e51f4217
update_forward_refs for Run (#9969)
Adds a call to Pydantic's `update_forward_refs` for the `Run` class (in
addition to the `ChainRun` and `ToolRun` classes, for which that method
is already called). Without it, the self-reference of child classes
(type `List[Run]`) is problematic. For example:

```python
from langchain.callbacks import StdOutCallbackHandler
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from wandb.integration.langchain import WandbTracer

llm = OpenAI()
prompt = PromptTemplate.from_template("1 + {number} = ")

chain = LLMChain(llm=llm, prompt=prompt, callbacks=[StdOutCallbackHandler(), WandbTracer()])
print(chain.run(number=2))

```

results in the following output before the change

```
WARNING:root:Error in on_chain_start callback: field "child_runs" not yet prepared so type is still a ForwardRef, you might need to call Run.update_forward_refs().

> Entering new LLMChain chain...
Prompt after formatting:
1 + 2 = 
WARNING:root:Error in on_chain_end callback: No chain Run found to be traced

> Finished chain.

3
```

but afterwards the callback error messages are gone.
2023-08-31 15:25:59 -07:00
Eugene Yurtsev
74fcfed4e2
lint for pydantic imports (#9937)
Catch pydantic imports
2023-08-31 15:55:29 -04:00
Zizhong Zhang
641b71e2cd
refactor: rename to OpaquePrompts (#10013)
Renamed to OpaquePrompts

cc @baskaryan Thanks in advance!
2023-08-31 12:21:24 -07:00
Bagatur
19400ba253
bump 278 (#10052) 2023-08-31 07:35:42 -07:00
Bagatur
29270e0378
fix #3117 (#9957)
fix #3117
2023-08-31 07:29:49 -07:00
Bagatur
5b913003e0 bump 2023-08-31 07:27:56 -07:00
Bagatur
4b15328767
Add indexing support for postgresql (#9933)
Add support to postgresql for the SQL Manager Record

This code was tested locally. I'm looking at how to add testing with
postgres in a separate PR.
2023-08-31 07:27:09 -07:00
Bagatur
e60e1cdf23
fixed openai_functions api_response format args err (#9968)
root cause: args may not have a key (params) resulting in an error
2023-08-31 00:49:19 -07:00
Bagatur
3efab8d3df
implement vectorstores by tencent vectordb (#9989)
Hi there!
I'm excited to open this PR to add support for using 'Tencent Cloud
VectorDB' as a vector store.

Tencent Cloud VectorDB is a fully-managed, self-developed,
enterprise-level distributed database service designed for storing,
retrieving, and analyzing multi-dimensional vector data. The database
supports multiple index types and similarity calculation methods, with a
single index supporting vector scales up to 1 billion and capable of
handling millions of QPS with millisecond-level query latency. Tencent
Cloud VectorDB not only provides external knowledge bases for large
models to improve their accuracy, but also has wide applications in AI
fields such as recommendation systems, NLP services, computer vision,
and intelligent customer service.

The PR includes:
 Implementation of Vectorstore.

I have read your [contributing
guidelines](72b7d76d79/.github/CONTRIBUTING.md).
And I have passed the tests below

 make format
 make lint
 make coverage
 make test
2023-08-31 00:48:25 -07:00
Bagatur
d43a36c32a
Bagatur/dereference tool schema (#10007)
fix for #9375
2023-08-31 00:48:12 -07:00
Bagatur
6b5a970949
refactor(document_loaders): abstract page evaluation logic in PlaywrightURLLoader (#9995)
This PR brings structural updates to `PlaywrightURLLoader`, aiming at
making the code more readable and extensible through the abstraction of
page evaluation logic. These changes also align this implementation with
a similar structure used in LangChain.js.

The key enhancements include:

1. Introduction of 'PlaywrightEvaluator', an abstract base class for all
evaluators.
2. Creation of 'UnstructuredHtmlEvaluator', a concrete class
implementing 'PlaywrightEvaluator', which uses `unstructured` library
for processing page's HTML content.
3. Extension of 'PlaywrightURLLoader' constructor to optionally accept
an evaluator of the type 'PlaywrightEvaluator'. It defaults to
'UnstructuredHtmlEvaluator' if no evaluator is provided.
4. Refactoring of 'load' and 'aload' methods to use the 'evaluate' and
'evaluate_async' methods of the provided 'PageEvaluator' for page
content handling.

This update brings flexibility to 'PlaywrightURLLoader' as it can now
utilize different evaluators for page processing depending on the
requirement. The abstraction also improves code maintainability and
readability.

Twitter: @ywkim
2023-08-31 00:45:33 -07:00