Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
If tool_use blocks and tool_calls with overlapping IDs are present,
prefer the values of the tool_calls. Allows for mutating AIMessages just
via tool_calls.
```python
class UsageMetadata(TypedDict):
"""Usage metadata for a message, such as token counts.
Attributes:
input_tokens: (int) count of input (or prompt) tokens
output_tokens: (int) count of output (or completion) tokens
total_tokens: (int) total token count
"""
input_tokens: int
output_tokens: int
total_tokens: int
```
```python
class AIMessage(BaseMessage):
...
usage_metadata: Optional[UsageMetadata] = None
"""If provided, token usage information associated with the message."""
...
```
enviroment variable ANTHROPIC_API_URL will not work if anthropic_api_url
has default value
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor]
```python
class ToolCall(TypedDict):
name: str
args: Dict[str, Any]
id: Optional[str]
class InvalidToolCall(TypedDict):
name: Optional[str]
args: Optional[str]
id: Optional[str]
error: Optional[str]
class ToolCallChunk(TypedDict):
name: Optional[str]
args: Optional[str]
id: Optional[str]
index: Optional[int]
class AIMessage(BaseMessage):
...
tool_calls: List[ToolCall] = []
invalid_tool_calls: List[InvalidToolCall] = []
...
class AIMessageChunk(AIMessage, BaseMessageChunk):
...
tool_call_chunks: Optional[List[ToolCallChunk]] = None
...
```
Important considerations:
- Parsing logic occurs within different providers;
- ~Changing output type is a breaking change for anyone doing explicit
type checking;~
- ~Langsmith rendering will need to be updated:
https://github.com/langchain-ai/langchainplus/pull/3561~
- ~Langserve will need to be updated~
- Adding chunks:
- ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has
non-null .tool_calls.~
- Tool call chunks are appended, merging when having equal values of
`index`.
- additional_kwargs accumulate the normal way.
- During streaming:
- ~Messages can change types (e.g., from AIMessageChunk to
AIToolCallsMessageChunk)~
- Output parsers parse additional_kwargs (during .invoke they read off
tool calls).
Packages outside of `partners/`:
- https://github.com/langchain-ai/langchain-cohere/pull/7
- https://github.com/langchain-ai/langchain-google/pull/123/files
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This PR make `request_timeout` and `max_retries` configurable for
ChatAnthropic.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** Update AnthropicLLM deprecation message import path for
ChatAnthropic
**Issue:** Incorrect import path in deprecation message
**Dependencies:** None
**Lint and test**: `make format`, `make lint` and `make test` were run
_generate() and _agenerate() both accept **kwargs, then pass them on to
_format_output; but _format_output doesn't accept **kwargs. Attempting
to pass, e.g.,
timeout=50
to _generate (or invoke()) results in a TypeError.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** Update docstrings of ChatAnthropic class
**Issue:** Change to ChatAnthropic from ChatAnthropicMessages
**Dependencies:** None
**Lint and test**: `make format`, `make lint` and `make test` passed
- **Description:**
The parameters for user and assistant in Anthropic should be 'ai ->
assistant,' but they are reversed to 'assistant -> ai.'
Below is error code.
```python
anthropic.BadRequestError: Error code: 400 - {'type': 'error', 'error': {'type': 'invalid_request_error', 'message': 'messages: Unexpected role "ai". Allowed roles are "user" or "assistant"'}}
```
[anthropic](7177f3a71f/src/anthropic/types/beta/message_param.py (L13))
- **Issue:** : #16561
- **Dependencies:** : None
- **Twitter handle:** : None