# Description
This pull request aims to address specific issues related to the
ambiguity and error-proneness of the output types of certain output
parsers, as well as the absence of unit tests for some parsers. These
issues could potentially lead to runtime errors or unexpected behaviors
due to type mismatches when used, causing confusion for developers and
users. Through clarifying output types, this PR seeks to improve the
stability and reliability.
Therefore, this pull request
- fixes the `OutputType` of OutputParsers to be the expected type;
- e.g. `OutputType` property of `EnumOutputParser` raises `TypeError`.
This PR introduce a logic to extract `OutputType` from its attribute.
- and fixes the legacy API in OutputParsers like `LLMChain.run` to the
modern API like `LLMChain.invoke`;
- Note: For `OutputFixingParser`, `RetryOutputParser` and
`RetryWithErrorOutputParser`, this PR introduces `legacy` attribute with
False as default value in order to keep the backward compatibility
- and adds the tests for the `OutputFixingParser` and
`RetryOutputParser`.
The following table shows my expected output and the actual output of
the `OutputType` of OutputParsers.
I have used this table to fix `OutputType` of OutputParsers.
| Class Name of OutputParser | My Expected `OutputType` (after this PR)|
Actual `OutputType` [evidence](#evidence) (before this PR)| Fix Required
|
|---------|--------------|---------|--------|
| BooleanOutputParser | `<class 'bool'>` | `<class 'bool'>` | NO |
| CombiningOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| DatetimeOutputParser | `<class 'datetime.datetime'>` | `<class
'datetime.datetime'>` | NO |
| EnumOutputParser(enum=MyEnum) | `MyEnum` | `TypeError` is raised | YES
|
| OutputFixingParser | The same type as `self.parser.OutputType` | `~T`
| YES |
| CommaSeparatedListOutputParser | `typing.List[str]` |
`typing.List[str]` | NO |
| MarkdownListOutputParser | `typing.List[str]` | `typing.List[str]` |
NO |
| NumberedListOutputParser | `typing.List[str]` | `typing.List[str]` |
NO |
| JsonOutputKeyToolsParser | `typing.Any` | `typing.Any` | NO |
| JsonOutputToolsParser | `typing.Any` | `typing.Any` | NO |
| PydanticToolsParser | `typing.Any` | `typing.Any` | NO |
| PandasDataFrameOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| PydanticOutputParser(pydantic_object=MyModel) | `<class
'__main__.MyModel'>` | `<class '__main__.MyModel'>` | NO |
| RegexParser | `typing.Dict[str, str]` | `TypeError` is raised | YES |
| RegexDictParser | `typing.Dict[str, str]` | `TypeError` is raised |
YES |
| RetryOutputParser | The same type as `self.parser.OutputType` | `~T` |
YES |
| RetryWithErrorOutputParser | The same type as `self.parser.OutputType`
| `~T` | YES |
| StructuredOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| YamlOutputParser(pydantic_object=MyModel) | `MyModel` | `~T` | YES |
NOTE: In "Fix Required", "YES" means that it is required to fix in this
PR while "NO" means that it is not required.
# Issue
No issues for this PR.
# Twitter handle
- [hmdev3](https://twitter.com/hmdev3)
# Questions:
1. Is it required to create tests for legacy APIs `LLMChain.run` in the
following scripts?
- libs/langchain/tests/unit_tests/output_parsers/test_fix.py;
- libs/langchain/tests/unit_tests/output_parsers/test_retry.py.
2. Is there a more appropriate expected output type than I expect in the
above table?
- e.g. the `OutputType` of `CombiningOutputParser` should be
SOMETHING...
# Actual outputs (before this PR)
<div id='evidence'></div>
<details><summary>Actual outputs</summary>
## Requirements
- Python==3.9.13
- langchain==0.1.13
```python
Python 3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import langchain
>>> langchain.__version__
'0.1.13'
>>> from langchain import output_parsers
```
### `BooleanOutputParser`
```python
>>> output_parsers.BooleanOutputParser().OutputType
<class 'bool'>
```
### `CombiningOutputParser`
```python
>>> output_parsers.CombiningOutputParser(parsers=[output_parsers.DatetimeOutputParser(), output_parsers.CommaSeparatedListOutputParser()]).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable CombiningOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `DatetimeOutputParser`
```python
>>> output_parsers.DatetimeOutputParser().OutputType
<class 'datetime.datetime'>
```
### `EnumOutputParser`
```python
>>> from enum import Enum
>>> class MyEnum(Enum):
... a = 'a'
... b = 'b'
...
>>> output_parsers.EnumOutputParser(enum=MyEnum).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable EnumOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `OutputFixingParser`
```python
>>> output_parsers.OutputFixingParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```
### `CommaSeparatedListOutputParser`
```python
>>> output_parsers.CommaSeparatedListOutputParser().OutputType
typing.List[str]
```
### `MarkdownListOutputParser`
```python
>>> output_parsers.MarkdownListOutputParser().OutputType
typing.List[str]
```
### `NumberedListOutputParser`
```python
>>> output_parsers.NumberedListOutputParser().OutputType
typing.List[str]
```
### `JsonOutputKeyToolsParser`
```python
>>> output_parsers.JsonOutputKeyToolsParser(key_name='tool').OutputType
typing.Any
```
### `JsonOutputToolsParser`
```python
>>> output_parsers.JsonOutputToolsParser().OutputType
typing.Any
```
### `PydanticToolsParser`
```python
>>> from langchain.pydantic_v1 import BaseModel
>>> class MyModel(BaseModel):
... a: int
...
>>> output_parsers.PydanticToolsParser(tools=[MyModel, MyModel]).OutputType
typing.Any
```
### `PandasDataFrameOutputParser`
```python
>>> output_parsers.PandasDataFrameOutputParser().OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable PandasDataFrameOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `PydanticOutputParser`
```python
>>> output_parsers.PydanticOutputParser(pydantic_object=MyModel).OutputType
<class '__main__.MyModel'>
```
### `RegexParser`
```python
>>> output_parsers.RegexParser(regex='$', output_keys=['a']).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable RegexParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `RegexDictParser`
```python
>>> output_parsers.RegexDictParser(output_key_to_format={'a':'a'}).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable RegexDictParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `RetryOutputParser`
```python
>>> output_parsers.RetryOutputParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```
### `RetryWithErrorOutputParser`
```python
>>> output_parsers.RetryWithErrorOutputParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```
### `StructuredOutputParser`
```python
>>> from langchain.output_parsers.structured import ResponseSchema
>>> response_schemas = [ResponseSchema(name="foo",description="a list of strings",type="List[string]"),ResponseSchema(name="bar",description="a string",type="string"), ]
>>> output_parsers.StructuredOutputParser.from_response_schemas(response_schemas).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable StructuredOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `YamlOutputParser`
```python
>>> output_parsers.YamlOutputParser(pydantic_object=MyModel).OutputType
~T
```
<div>
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This change adds args_schema (pydantic BaseModel) to SearxSearchRun for
correct schema formatting on LLM function calls
Issue: currently using SearxSearchRun with OpenAI function calling
returns the following error "TypeError: SearxSearchRun._run() got an
unexpected keyword argument '__arg1' ".
This happens because the schema sent to the LLM is "input:
'{"__arg1":"foobar"}'" while the method should be called with the
"query" parameter.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Updated
*community.langchain_community.document_loaders.directory.py* to enable
the use of multiple glob patterns in the `DirectoryLoader` class. Now,
the glob parameter is of type `list[str] | str` and still defaults to
the same value as before. I updated the docstring of the class to
reflect this, and added a unit test to
*community.tests.unit_tests.document_loaders.test_directory.py* named
`test_directory_loader_glob_multiple`. This test also shows an example
of how to use the new functionality.
- ~~Issue:~~**Discussion Thread:**
https://github.com/langchain-ai/langchain/discussions/18559
- **Dependencies:** None
- **Twitter handle:** N/a
- [x] **Add tests and docs**
- Added test (described above)
- Updated class docstring
- [x] **Lint and test**
---------
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Fix https://github.com/langchain-ai/langchain/issues/22972.
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
```SemanticChunker``` currently provide three methods to split the texts semantically:
- percentile
- standard_deviation
- interquartile
I propose new method ```gradient```. In this method, the gradient of distance is used to split chunks along with the percentile method (technically) . This method is useful when chunks are highly correlated with each other or specific to a domain e.g. legal or medical. The idea is to apply anomaly detection on gradient array so that the distribution become wider and easy to identify boundaries in highly semantic data.
I have tested this merge on a set of 10 domain specific documents (mostly legal).
Details :
- **Issue:** Improvement
- **Dependencies:** NA
- **Twitter handle:** [x.com/prajapat_ravi](https://x.com/prajapat_ravi)
@hwchase17
---------
Co-authored-by: Raviraj Prajapat <raviraj.prajapat@sirionlabs.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Add chat history store based on Kafka.
Files added:
`libs/community/langchain_community/chat_message_histories/kafka.py`
`docs/docs/integrations/memory/kafka_chat_message_history.ipynb`
New issue to be created for future improvement:
1. Async method implementation.
2. Message retrieval based on timestamp.
3. Support for other configs when connecting to cloud hosted Kafka (e.g.
add `api_key` field)
4. Improve unit testing & integration testing.
**Description:**
- What I changed
- By specifying the `id_key` during the initialization of
`EnsembleRetriever`, it is now possible to determine which documents to
merge scores for based on the value corresponding to the `id_key`
element in the metadata, instead of `page_content`. Below is an example
of how to use the modified `EnsembleRetriever`:
```python
retriever = EnsembleRetriever(retrievers=[ret1, ret2], id_key="id") #
The Document returned by each retriever must keep the "id" key in its
metadata.
```
- Additionally, I added a script to easily test the behavior of the
`invoke` method of the modified `EnsembleRetriever`.
- Why I changed
- There are cases where you may want to calculate scores by treating
Documents with different `page_content` as the same when using
`EnsembleRetriever`. For example, when you want to ensemble the search
results of the same document described in two different languages.
- The previous `EnsembleRetriever` used `page_content` as the basis for
score aggregation, making the above usage difficult. Therefore, the
score is now calculated based on the specified key value in the
Document's metadata.
**Twitter handle:** @shimajiroxyz
- **Description:** add tool_messages_formatter for tool calling agent,
make tool messages can be formatted in different ways for your LLM.
- **Issue:** N/A
- **Dependencies:** N/A
**Standardizing DocumentLoader docstrings (of which there are many)**
This PR addresses issue #22866 and adds docstrings according to the
issue's specified format (in the appendix) for files csv_loader.py and
json_loader.py in langchain_community.document_loaders. In particular,
the following sections have been added to both CSVLoader and JSONLoader:
Setup, Instantiate, Load, Async load, and Lazy load. It may be worth
adding a 'Metadata' section to the JSONLoader docstring to clarify how
we want to extract the JSON metadata (using the `metadata_func`
argument). The files I used to walkthrough the various sections were
`example_2.json` from
[HERE](https://support.oneskyapp.com/hc/en-us/articles/208047697-JSON-sample-files)
and `hw_200.csv` from
[HERE](https://people.sc.fsu.edu/~jburkardt/data/csv/csv.html).
---------
Co-authored-by: lucast2021 <lucast2021@headroyce.org>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
- **Description:** A very small fix in the Docstring of
`DuckDuckGoSearchResults` identified in the following issue.
- **Issue:** #22961
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **PR title**: "community: Fix#22975 (Add SSL Verification Option to
Requests Class in langchain_community)"
- **PR message**:
- **Description:**
- Added an optional verify parameter to the Requests class with a
default value of True.
- Modified the get, post, patch, put, and delete methods to include the
verify parameter.
- Updated the _arequest async context manager to include the verify
parameter.
- Added the verify parameter to the GenericRequestsWrapper class and
passed it to the Requests class.
- **Issue:** This PR fixes issue #22975.
- **Dependencies:** No additional dependencies are required for this
change.
- **Twitter handle:** @lunara_x
You can check this change with below code.
```python
from langchain_openai.chat_models import ChatOpenAI
from langchain.requests import RequestsWrapper
from langchain_community.agent_toolkits.openapi import planner
from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec
with open("swagger.yaml") as f:
data = yaml.load(f, Loader=yaml.FullLoader)
swagger_api_spec = reduce_openapi_spec(data)
llm = ChatOpenAI(model='gpt-4o')
swagger_requests_wrapper = RequestsWrapper(verify=False) # modified point
superset_agent = planner.create_openapi_agent(swagger_api_spec, swagger_requests_wrapper, llm, allow_dangerous_requests=True, handle_parsing_errors=True)
superset_agent.run(
"Tell me the number and types of charts and dashboards available."
)
```
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** The PR #22777 introduced a bug in
`_similarity_search_without_score` which was raising the
`OperationFailure` error. The mistake was syntax error for MongoDB
pipeline which has been corrected now.
- **Issue:** #22770
Thank you for contributing to LangChain!
- [x] **PR title**: "community: OCI GenAI embedding batch size"
- [x] **PR message**:
- **Issue:** #22985
- [ ] **Add tests and docs**: N/A
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Anders Swanson <anders.swanson@oracle.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- StopIteration can't be set on an asyncio.Future it raises a TypeError
and leaves the Future pending forever so we need to convert it to a
RuntimeError
- Refactor standard test classes to make them easier to configure
- Update openai to support stop_sequences init param
- Update groq to support stop_sequences init param
- Update fireworks to support max_retries init param
- Update ChatModel.bind_tools to type tool_choice
- Update groq to handle tool_choice="any". **this may be controversial**
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Support batch size**
Baichuan updates the document, indicating that up to 16 documents can be
imported at a time
- **Standardized model init arg names**
- baichuan_api_key -> api_key
- model_name -> model
Here we add `stream_usage` to ChatOpenAI as:
1. a boolean attribute
2. a kwarg to _stream and _astream.
Question: should the `stream_usage` attribute be `bool`, or `bool |
None`?
Currently I've kept it `bool` and defaulted to False. It was implemented
on
[ChatAnthropic](e832bbb486/libs/partners/anthropic/langchain_anthropic/chat_models.py (L535))
as a bool. However, to maintain support for users who access the
behavior via OpenAI's `stream_options` param, this ends up being
possible:
```python
llm = ChatOpenAI(model_kwargs={"stream_options": {"include_usage": True}})
assert not llm.stream_usage
```
(and this model will stream token usage).
Some options for this:
- it's ok
- make the `stream_usage` attribute bool or None
- make an \_\_init\_\_ for ChatOpenAI, set a `._stream_usage` attribute
and read `.stream_usage` from a property
Open to other ideas as well.
**Description:** This PR adds a chat model integration for [Snowflake
Cortex](https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions),
which gives an instant access to industry-leading large language models
(LLMs) trained by researchers at companies like Mistral, Reka, Meta, and
Google, including [Snowflake
Arctic](https://www.snowflake.com/en/data-cloud/arctic/), an open
enterprise-grade model developed by Snowflake.
**Dependencies:** Snowflake's
[snowpark](https://pypi.org/project/snowflake-snowpark-python/) library
is required for using this integration.
**Twitter handle:** [@gethouseware](https://twitter.com/gethouseware)
- [x] **Add tests and docs**:
1. integration tests:
`libs/community/tests/integration_tests/chat_models/test_snowflake.py`
2. unit tests:
`libs/community/tests/unit_tests/chat_models/test_snowflake.py`
3. example notebook: `docs/docs/integrations/chat/snowflake.ipynb`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Adds `response_metadata` to stream responses from OpenAI. This is
returned with `invoke` normally, but wasn't implemented for `stream`.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Description
While `YouRetriever` supports both You.com's Search and News APIs, news
is supported as an afterthought.
More specifically, not all of the News API parameters are exposed for
the user, only those that happen to overlap with the Search API.
This PR:
- improves support for both APIs, exposing the remaining News API
parameters while retaining backward compatibility
- refactor some REST parameter generation logic
- updates the docstring of `YouSearchAPIWrapper`
- add input validation and warnings to ensure parameters are properly
set by user
- 🚨 Breaking: Limit the news results to `k` items
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Ollama has a raw option now.
https://github.com/ollama/ollama/blob/main/docs/api.md
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
**Issue:**
When using the similarity_search_with_score function in
ElasticsearchStore, I expected to pass in the query_vector that I have
already obtained. I noticed that the _search function does support the
query_vector parameter, but it seems to be ineffective. I am attempting
to resolve this issue.
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Update former pull request:
https://github.com/langchain-ai/langchain/pull/22654.
Modified `langchain_text_splitters.HTMLSectionSplitter`, where in the
latest version `dict` data structure is used to store sections from a
html document, in function `split_html_by_headers`. The header/section
element names serve as dict keys. This can be a problem when duplicate
header/section element names are present in a single html document.
Latter ones can replace former ones with the same name. Therefore some
contents can be miss after html text splitting is conducted.
Using a list to store sections can hopefully solve the problem. A Unit
test considering duplicate header names has been added.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
The generated relationships in the graph had no properties, but the
Relationship class was properly defined with properties. This made it
very difficult to transform conditional sentences into a graph. Adding
properties to relationships can solve this issue elegantly.
The changes expand on the existing LLMGraphTransformer implementation
but add the possibility to define allowed relationship properties like
this: LLMGraphTransformer(llm=llm, relationship_properties=["Condition",
"Time"],)
- **Issue:**
no issue found
- **Dependencies:**
n/a
- **Twitter handle:**
@IstvanSpace
-Quick Test
=================================================================
from dotenv import load_dotenv
import os
from langchain_community.graphs import Neo4jGraph
from langchain_experimental.graph_transformers import
LLMGraphTransformer
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.documents import Document
load_dotenv()
os.environ["NEO4J_URI"] = os.getenv("NEO4J_URI")
os.environ["NEO4J_USERNAME"] = os.getenv("NEO4J_USERNAME")
os.environ["NEO4J_PASSWORD"] = os.getenv("NEO4J_PASSWORD")
graph = Neo4jGraph()
llm = ChatOpenAI(temperature=0, model_name="gpt-4o")
llm_transformer = LLMGraphTransformer(llm=llm)
#text = "Harry potter likes pies, but only if it rains outside"
text = "Jack has a dog named Max. Jack only walks Max if it is sunny
outside."
documents = [Document(page_content=text)]
llm_transformer_props = LLMGraphTransformer(
llm=llm,
relationship_properties=["Condition"],
)
graph_documents_props =
llm_transformer_props.convert_to_graph_documents(documents)
print(f"Nodes:{graph_documents_props[0].nodes}")
print(f"Relationships:{graph_documents_props[0].relationships}")
graph.add_graph_documents(graph_documents_props)
---------
Co-authored-by: Istvan Lorincz <istvan.lorincz@pm.me>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
If the global `debug` flag is enabled, the agent will get the following
error in `FunctionCallbackHandler._on_tool_end` at runtime.
```
Error in ConsoleCallbackHandler.on_tool_end callback: AttributeError("'list' object has no attribute 'strip'")
```
By calling str() before strip(), the error was avoided.
This error can be seen at
[debugging.ipynb](https://github.com/langchain-ai/langchain/blob/master/docs/docs/how_to/debugging.ipynb).
- Issue: NA
- Dependencies: NA
- Twitter handle: https://x.com/kiarina37