One of our users noticed a bug when calling streaming models. This is
because those models return an iterator. So, I've updated the Replicate
`_call` code to join together the output. The other advantage of this
fix is that if you requested multiple outputs you would get them all –
previously I was just returning output[0].
I also adjusted the demo docs to use dolly, because we're featuring that
model right now and it's always hot, so people won't have to wait for
the model to boot up.
The error that this fixes:
```
> llm = Replicate(model=“replicate/flan-t5-xl:eec2f71c986dfa3b7a5d842d22e1130550f015720966bec48beaae059b19ef4c”)
> llm(“hello”)
> Traceback (most recent call last):
File "/Users/charlieholtz/workspace/dev/python/main.py", line 15, in <module>
print(llm(prompt))
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 246, in __call__
return self.generate([prompt], stop=stop).generations[0][0].text
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 140, in generate
raise e
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 137, in generate
output = self._generate(prompts, stop=stop)
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 324, in _generate
text = self._call(prompt, stop=stop)
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/replicate.py", line 108, in _call
return outputs[0]
TypeError: 'generator' object is not subscriptable
```
The sentence transformers was a dup of the HF one.
This is a breaking change (model_name vs. model) for anyone using
`SentenceTransformerEmbeddings(model="some/nondefault/model")`, but
since it was landed only this week it seems better to do this now rather
than doing a wrapper.
Update Alchemy Key URL in Blockchain Document Loader. I want to say
thank you for the incredible work the LangChain library creators have
done.
I am amazed at how seamlessly the Loader integrates with Ethereum
Mainnet, Ethereum Testnet, Polygon Mainnet, and Polygon Testnet, and I
am excited to see how this technology can be extended in the future.
@hwchase17 - Please let me know if I can improve or if I have missed any
community guidelines in making the edit? Thank you again for your hard
work and dedication to the open source community.
Improved `arxiv/tool.py` by adding more specific information to the
`description`. It would help with selecting `arxiv` tool between other
tools.
Improved `arxiv.ipynb` with more useful descriptions.
My attempt at improving the `Chain`'s `Getting Started` docs and
`LLMChain` docs. Might need some proof-reading as English is not my
first language.
In LLM examples, I replaced the example use case when a simpler one
(shorter LLM output) to reduce cognitive load.
Updated `Getting Started` page of `Prompt Templates` to showcase more
features provided by the class. Might need some proof reading because
apparently English is not my first language.
Improvements
* set default num_workers for ingestion to 0
* upgraded notebooks for avoiding dataset creation ambiguity
* added `force_delete_dataset_by_path`
* bumped deeplake to 3.3.0
* creds arg passing to deeplake object that would allow custom S3
Notes
* please double check if poetry is not messed up (thanks!)
Asks
* Would be great to create a shared slack channel for quick questions
---------
Co-authored-by: Davit Buniatyan <d@activeloop.ai>
This pull request adds a ChatGPT document loader to the document loaders
module in `langchain/document_loaders/chatgpt.py`. Additionally, it
includes an example Jupyter notebook in
`docs/modules/indexes/document_loaders/examples/chatgpt_loader.ipynb`
which uses fake sample data based on the original structure of the
`conversations.json` file.
The following files were added/modified:
- `langchain/document_loaders/__init__.py`
- `langchain/document_loaders/chatgpt.py`
- `docs/modules/indexes/document_loaders/examples/chatgpt_loader.ipynb`
-
`docs/modules/indexes/document_loaders/examples/example_data/fake_conversations.json`
This pull request was made in response to the recent release of ChatGPT
data exports by email:
https://help.openai.com/en/articles/7260999-how-do-i-export-my-chatgpt-history
Hi there!
I'm excited to open this PR to add support for using a fully Postgres
syntax compatible database 'AnalyticDB' as a vector.
As AnalyticDB has been proved can be used with AutoGPT,
ChatGPT-Retrieve-Plugin, and LLama-Index, I think it is also good for
you.
AnalyticDB is a distributed Alibaba Cloud-Native vector database. It
works better when data comes to large scale. The PR includes:
- [x] A new memory: AnalyticDBVector
- [x] A suite of integration tests verifies the AnalyticDB integration
I have read your [contributing
guidelines](72b7d76d79/.github/CONTRIBUTING.md).
And I have passed the tests below
- [x] make format
- [x] make lint
- [x] make coverage
- [x] make test
First cut of a supabase vectorstore loosely patterned on the langchainjs
equivalent. Doesn't support async operations which is a limitation of
the supabase python client.
---------
Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
I have noticed a typo error in the `custom_mrkl_agents.ipynb` document
while trying the example from the documentation page. As a result, I
have opened a pull request (PR) to address this minor issue, even though
it may seem insignificant 😂.
The following calls were throwing an exception:
575b717d10/docs/use_cases/evaluation/agent_vectordb_sota_pg.ipynb (L192)575b717d10/docs/use_cases/evaluation/agent_vectordb_sota_pg.ipynb (L239)
Exception:
```
---------------------------------------------------------------------------
ValidationError Traceback (most recent call last)
Cell In[14], line 1
----> 1 chain_sota = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0), chain_type="stuff", retriever=vectorstore_sota, input_key="question")
File ~/github/langchain/venv/lib/python3.9/site-packages/langchain/chains/retrieval_qa/base.py:89, in BaseRetrievalQA.from_chain_type(cls, llm, chain_type, chain_type_kwargs, **kwargs)
85 _chain_type_kwargs = chain_type_kwargs or {}
86 combine_documents_chain = load_qa_chain(
87 llm, chain_type=chain_type, **_chain_type_kwargs
88 )
---> 89 return cls(combine_documents_chain=combine_documents_chain, **kwargs)
File ~/github/langchain/venv/lib/python3.9/site-packages/pydantic/main.py:341, in pydantic.main.BaseModel.__init__()
ValidationError: 1 validation error for RetrievalQA
retriever
instance of BaseRetriever expected (type=type_error.arbitrary_type; expected_arbitrary_type=BaseRetriever)
```
The vectorstores had to be converted to retrievers:
`vectorstore_sota.as_retriever()` and `vectorstore_pg.as_retriever()`.
The PR also:
- adds the file `paul_graham_essay.txt` referenced by this notebook
- adds to gitignore *.pkl and *.bin files that are generated by this
notebook
Interestingly enough, the performance of the prediction greatly
increased (new version of langchain or ne version of OpenAI models since
the last run of the notebook): from 19/33 correct to 28/33 correct!