## **Description:**
When building our own readthedocs.io scraper, we noticed a couple
interesting things:
1. Text lines with a lot of nested <span> tags would give unclean text
with a bunch of newlines. For example, for [Langchain's
documentation](https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.readthedocs.ReadTheDocsLoader.html#langchain.document_loaders.readthedocs.ReadTheDocsLoader),
a single line is represented in a complicated nested HTML structure, and
the naive `soup.get_text()` call currently being made will create a
newline for each nested HTML element. Therefore, the document loader
would give a messy, newline-separated blob of text. This would be true
in a lot of cases.
<img width="945" alt="Screenshot 2023-10-26 at 6 15 39 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/eca85d1f-d2bf-4487-a18a-e1e732fadf19">
<img width="1031" alt="Screenshot 2023-10-26 at 6 16 00 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/035938a0-9892-4f6a-83cd-0d7b409b00a3">
Additionally, content from iframes, code from scripts, css from styles,
etc. will be gotten if it's a subclass of the selector (which happens
more often than you'd think). For example, [this
page](https://pydeck.gl/gallery/contour_layer.html#) will scrape 1.5
million characters of content that looks like this:
<img width="1372" alt="Screenshot 2023-10-26 at 6 32 55 PM"
src="https://github.com/langchain-ai/langchain/assets/44193474/dbd89e39-9478-4a18-9e84-f0eb91954eac">
Therefore, I wrote a recursive _get_clean_text(soup) class function that
1. skips all irrelevant elements, and 2. only adds newlines when
necessary.
2. Index pages (like [this
one](https://api.python.langchain.com/en/latest/api_reference.html))
would be loaded, chunked, and eventually embedded. This is really bad
not just because the user will be embedding irrelevant information - but
because index pages are very likely to show up in retrieved content,
making retrieval less effective (in our tests). Therefore, I added a
bool parameter `exclude_index_pages` defaulted to False (which is the
current behavior — although I'd petition to default this to True) that
will skip all pages where links take up 50%+ of the page. Through manual
testing, this seems to be the best threshold.
## Other Information:
- **Issue:** n/a
- **Dependencies:** n/a
- **Tag maintainer:** n/a
- **Twitter handle:** @andrewthezhou
---------
Co-authored-by: Andrew Zhou <andrew@heykona.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
* Add unit tests for document_transformers/beautiful_soup_transformer.py
* Basic functionality is tested (extract tags, remove tags, drop lines)
* add a FIXME comment about the order of tags that is not preserved
(and a passing test, but with the expected tags now out-of-order)
- **Issue:** None
- **Dependencies:** None
- **Tag maintainer:** @rlancemartin
- **Twitter handle:** `peter_v`
Please make sure your PR is passing linting and testing before
submitting.
=> OK: I ran `make format`, `make test` (passing after install of
beautifulsoup4) and `make lint`.
- **Description:** Added masking of the API Key for AI21 LLM when
printed and improved the docstring for AI21 LLM.
- Updated the AI21 LLM to utilize SecretStr from pydantic to securely
manage API key.
- Made improvements in the docstring of AI21 LLM. It now mentions that
the API key can also be passed as a named parameter to the constructor.
- Added unit tests.
- **Issue:** #12165
- **Tag maintainer:** @eyurtsev
---------
Co-authored-by: Anirudh Gautam <anirudh@Anirudhs-Mac-mini.local>
Currently this gives a bug:
```
from langchain.schema.runnable import RunnableLambda
bound = RunnableLambda(lambda x: x).with_config({"callbacks": []})
# ConfigError: field "callbacks" not yet prepared so type is still a ForwardRef, you might need to call RunnableConfig.update_forward_refs().
```
Rather than deal with cyclic imports and extra load time, etc., I think
it makes sense to just have a separate Callbacks definition here that is
a relaxed typehint.
1. Allow run evaluators to return {"results": [list of evaluation
results]} in the evaluator callback.
2. Allows run evaluators to pick the target run ID to provide feedback
to
(1) means you could do something like a function call that populates a
full rubric in one go (not sure how reliable that is in general though)
rather than splitting off into separate LLM calls - cheaper and less
code to write
(2) means you can provide feedback to runs on subsequent calls.
Immediate use case is if you wanted to add an evaluator to a chat bot
and assign to assign to previous conversation turns
have a corresponding one in the SDK
In the GoogleSerperResults class, the name field is defined as
'google_serrper_results_json'. This looks like a typo, and perhaps
should be 'google_serper_results_json'.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Add Redis langserve template! Eventually will add semantic caching to
this too. But I was struggling to get that to work for some reason with
the LCEL implementation here.
- **Description:** Introduces the Redis LangServe template. A simple RAG
based app built on top of Redis that allows you to chat with company's
public financial data (Edgar 10k filings)
- **Issue:** None
- **Dependencies:** The template contains the poetry project
requirements to run this template
- **Tag maintainer:** @baskaryan @Spartee
- **Twitter handle:** @tchutch94
**Note**: this requires the commit here that deletes the
`_aget_relevant_documents()` method from the Redis retriever class that
wasn't implemented. That was breaking the langserve app.
---------
Co-authored-by: Sam Partee <sam.partee@redis.com>
-**Description** Adds returning the reranking score when using semantic
search
-**Issue:* #12317
---------
Co-authored-by: Adam Law <adamlaw@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Improve handling of empty queries in timescale-vector.
For timescale-vector it is more efficient to get a None embedding when
the embedding has no semantic meaning. It allows timescale-vector to
perform more optimizations. Thus, when the query is empty, use a None
embedding.
Also pass down constructor arguments to the timescale vector client.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This code path is hit in the following case:
- Start in langchain code and manually provide a tracer
- Handoff to the traceable
- Hand back to langchain code.
Which happens for evaluating `@traceable` functions unfortunately
- **Description: To handle the hybrid search with RRF(Reciprocal Rank
Fusion) in the Elasticsearch, rrf argument was added for adjusting
'rank_constant' and 'window_size' to combine multiple result sets with
different relevance indicators into a single result set. (ref:
https://www.elastic.co/kr/blog/whats-new-elastic-enterprise-search-8-9-0),
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** No dependencies changed,
- **Tag maintainer:** @baskaryan,
Nice to meet you,
I'm a newbie for contributions and it's my first PR.
I only changed the langchain/vectorstores/elasticsearch.py file.
I did make format&lint
I got this message,
```shell
make lint_diff
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
[ "langchain/vectorstores/elasticsearch.py" = "" ] || poetry run black langchain/vectorstores/elasticsearch.py --check
All done! ✨🍰✨
1 file would be left unchanged.
[ "langchain/vectorstores/elasticsearch.py" = "" ] || poetry run mypy langchain/vectorstores/elasticsearch.py
langchain/__init__.py: error: Source file found twice under different module names: "mvp.nlp.langchain.libs.langchain.langchain" and "langchain"
Found 1 error in 1 file (errors prevented further checking)
make: *** [lint_diff] Error 2
```
Thank you
---------
Co-authored-by: 황중원 <jwhwang@amorepacific.com>
My postgres out of connections after continuous PGVector usage, and the
reason because it constantly creates new connections, so adding a
reusable pre established connection seems like solves an issue
---------
Co-authored-by: Roman Vasilyev <rvasilyev@mozilla.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
See discussion here:
https://github.com/langchain-ai/langchain/discussions/11680
The code is available for usage from langchain_experimental. The reason
for the deprecation is that the agents are relying on a Python REPL. The
code can only be run safely with appropriate sandboxing.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
The changes introduced in #12267 and #12190 broke the cost computation
of the `completion` tokens for fine-tuned models because of the early
return. This PR aims at fixing this.
@baskaryan.
**Description:**
Revise `libs/langchain/langchain/document_loaders/async_html.py` to
store the HTML Title and Page Language in the `metadata` of
`AsyncHtmlLoader`.
Compare predicted json to reference. First canonicalize (sort keys, rm
whitespace separators), then return normalized string edit distance.
Not a silver bullet but maybe an easy way to capture structure
differences in a less flakey way
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Will run all CI because of _test change, but future PRs against CLI will
only trigger the new CLI one
Has a bunch of file changes related to formatting/linting.
No mypy yet - coming soon
**Description**
This small change will make chunk_size a configurable parameter for
loading documents into a Supabase database.
**Issue**
https://github.com/langchain-ai/langchain/issues/11422
**Dependencies**
No chanages
**Twitter**
@ j1philli
**Reminder**
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Greg Richardson <greg.nmr@gmail.com>
Description
* Add _generate and _agenerate to support Fireworks batching.
* Add stop words test cases
* Opt out retry mechanism
Issue - Not applicable
Dependencies - None
Tag maintainer - @baskaryan
- **Description:** refactors the redis vector field schema to properly
handle default values, includes a new unit test suite.
- **Issue:** N/A
- **Dependencies:** nothing new.
- **Tag maintainer:** @baskaryan @Spartee
- **Twitter handle:** this is a tiny fix/improvement :)
This issue was causing some clients/cuatomers issues when building a
vector index on Redis on smaller db instances (due to fault default
values in index configuration). It would raise an error like:
```redis.exceptions.ResponseError: Vector index initial capacity 20000 exceeded server limit (852 with the given parameters)```
This PR will address this moving forward.