### Description
This PR adds a wrapper which adds support for the OpenSearch vector
database. Using opensearch-py client we are ingesting the embeddings of
given text into opensearch cluster using Bulk API. We can perform the
`similarity_search` on the index using the 3 popular searching methods
of OpenSearch k-NN plugin:
- `Approximate k-NN Search` use approximate nearest neighbor (ANN)
algorithms from the [nmslib](https://github.com/nmslib/nmslib),
[faiss](https://github.com/facebookresearch/faiss), and
[Lucene](https://lucene.apache.org/) libraries to power k-NN search.
- `Script Scoring` extends OpenSearch’s script scoring functionality to
execute a brute force, exact k-NN search.
- `Painless Scripting` adds the distance functions as painless
extensions that can be used in more complex combinations. Also, supports
brute force, exact k-NN search like Script Scoring.
### Issues Resolved
https://github.com/hwchase17/langchain/issues/1054
---------
Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
Pydantic validation breaks tests for example (`test_qdrant.py`) because
fake embeddings contain an integer.
This PR casts the embeddings array to all floats.
Now the `qdrant` test passes, `poetry run pytest
tests/integration_tests/vectorstores/test_qdrant.py`
Alternate implementation to PR #960 Again - only FAISS is implemented.
If accepted can add this to other vectorstores or leave as
NotImplemented? Suggestions welcome...
This PR adds persistence to the Chroma vector store.
Users can supply a `persist_directory` with any of the `Chroma` creation
methods. If supplied, the store will be automatically persisted at that
directory.
If a user creates a new `Chroma` instance with the same persistence
directory, it will get loaded up automatically. If they use `from_texts`
or `from_documents` in this way, the documents will be loaded into the
existing store.
There is the chance of some funky behavior if the user passes a
different embedding function from the one used to create the collection
- we will make this easier in future updates. For now, we log a warning.
Chroma is a simple to use, open-source, zero-config, zero setup
vectorstore.
Simply `pip install chromadb`, and you're good to go.
Out-of-the-box Chroma is suitable for most LangChain workloads, but is
highly flexible. I tested to 1M embs on my M1 mac, with out issues and
reasonably fast query times.
Look out for future releases as we integrate more Chroma features with
LangChain!
Signed-off-by: Filip Haltmayer <filip.haltmayer@zilliz.com>
Signed-off-by: Frank Liu <frank.liu@zilliz.com>
Co-authored-by: Filip Haltmayer <81822489+filip-halt@users.noreply.github.com>
Co-authored-by: Frank Liu <frank@frankzliu.com>
- This uses the faiss built-in `write_index` and `load_index` to save
and load faiss indexes locally
- Also fixes#674
- The save/load functions also use the faiss library, so I refactored
the dependency into a function
this will break atm but wanted to get thoughts on implementation.
1. should add() be on docstore interface?
2. should InMemoryDocstore change to take a list of documents as init?
(makes this slightly easier to implement in FAISS -- if we think it is
less clean then could expose a method to get the number of documents
currently in the dict, and perform the logic of creating the necessary
dictionary in the FAISS.add_texts method.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>