Description: Adding Summarization to Vectara, to reflect it provides not
only vector-store type functionality but also can return a summary.
Also added:
MMR capability (in the Vectara platform side)
Updated templates
Updated documentation and IPYNB examples
Tag maintainer: @baskaryan
Twitter handle: @ofermend
---------
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
**What is the reproduce code?**
```python
from langchain.chains import LLMChain, load_chain
from langchain.llms import Databricks
from langchain.prompts import PromptTemplate
def transform_output(response):
# Extract the answer from the responses.
return str(response["candidates"][0]["text"])
def transform_input(**request):
full_prompt = f"""{request["prompt"]}
Be Concise.
"""
request["prompt"] = full_prompt
return request
chat_model = Databricks(
endpoint_name="llama2-13B-chat-Brambles",
transform_input_fn=transform_input,
transform_output_fn=transform_output,
verbose=True,
)
print(f"Test chat model: {chat_model('What is Apache Spark')}") # This works
llm_chain = LLMChain(llm=chat_model, prompt=PromptTemplate.from_template("{chat_input}"))
llm_chain("colorful socks") # this works
llm_chain.save("databricks_llm_chain.yaml") # transform_input_fn and transform_output_fn are not serialized into the model yaml file
loaded_chain = load_chain("databricks_llm_chain.yaml") # The Databricks LLM is recreated with transform_input_fn=None, transform_output_fn=None.
loaded_chain("colorful socks") # Thus this errors. The transform_output_fn is needed to produce the correct output
```
Error:
```
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-6c34afab-3473-421d-877f-1ef18930ef4d/lib/python3.10/site-packages/pydantic/v1/main.py", line 341, in __init__
raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for Generation
text
str type expected (type=type_error.str)
request payload: {'query': 'What is a databricks notebook?'}'}
```
**What does the error mean?**
When the LLM generates an answer, represented by a Generation data
object. The Generation data object takes a str field called text, e.g.
Generation(text=”blah”). However, the Databricks LLM tried to put a
non-str to text, e.g. Generation(text={“candidates”:[{“text”: “blah”}]})
Thus, pydantic errors.
**Why the output format becomes incorrect after saving and loading the
Databricks LLM?**
Databrick LLM does not support serializing transform_input_fn and
transform_output_fn, so they are not serialized into the model yaml
file. When the Databricks LLM is loaded, it is recreated with
transform_input_fn=None, transform_output_fn=None. Without
transform_output_fn, the output text is not unwrapped, thus errors.
Missing transform_output_fn causes this error.
Missing transform_input_fn causes the additional prompt “Be Concise.” to
be lost after saving and loading.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
This PR intends to add support for Qdrant's new [sparse vector
retrieval](https://qdrant.tech/articles/sparse-vectors/) by introducing
a new retriever class, `QdrantSparseVectorRetriever`.
Necessary usage docs and integration tests have been added for the
retriever.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
This PR fixes the issue faces with duplicate input id in Clarifai
vectorstore class when ingesting documents into the vectorstore more
than the batch size.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Similar to https://github.com/langchain-ai/langchain/issues/5861, I've
experienced `KeyError`s resulting from unsafe lookups in the
`convert_dict_to_message` function in [this
file](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/adapters/openai.py).
While that issue focused on `KeyError 'content'`, I've opened another
issue (#14764) about how the problem still exists in the same function
but with `KeyError 'role'`. The fix for #5861 only added a safe lookup
to the specific line that was giving them trouble.. This PR fixes the
unsafe lookup in the rest of the function but the problem still exists
across the repo.
## Issues
* #14764
* #5861
## Dependencies
* None
## Checklist
[x] make format
[x] make lint
[ ] make test - Results in `make: *** No rule to make target 'test'.
Stop.`
## Maintainers
* @hinthornw
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR adds support for PygmalionAI's [Aphrodite
Engine](https://github.com/PygmalionAI/aphrodite-engine), based on
vLLM's attention mechanism. At the moment, this PR does not include
support for the API servers, but they will be added in a later PR.
The only dependency as of now is `aphrodite-engine==0.4.2`. We pin the
version to prevent breakage due to changes in the aphrodite-engine
library.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Introducing an ability to work with the
[YandexGPT](https://cloud.yandex.com/en/services/yandexgpt) embeddings
models.
---------
Co-authored-by: Dmitry Tyumentsev <dmitry.tyumentsev@raftds.com>
- **Description:** Modify community chat model vertexai to handle png
and other image types encoded in base64
- **Dependencies:** added `import re` but no new dependencies.
This addresses a problem where the vertexai method
_parse_chat_history_gemini() was only recognizing image uris in jpeg
format. I made a simple change to cover other extension types.
- **Description:** The Qianfan SDK offers multiple authentication
methods, but in the `QianfanEndpoint` of Langchain, it currently only
supports authentication through AK and SK. In order to accommodate users
who wish to use alternative authentication methods, this pull request
makes AK and SK optional. This change should not impact existing users,
while allowing users to configure other authentication methods as per
the Qianfan SDK documentation.
- **Issue:** /
- **Dependencies:** No
- **Tag maintainer:** No
- **Twitter handle:**
Added Entry ID as a return value inside get_summaries_as_docs
- **Description:** Added the Entry ID as a return, so it's easier to
track the IDs of the papers that are being returned.
With the addition return of the entry ID in functions like
ArxivRetriever, it will be easier to reference the ID of the paper
itself.
- Description: Just a minor add to the documentation to clarify how to
load all files from a folder. I assumed and try to do it specifying it
in the bucket (BUCKET/FOLDER), instead of using the prefix.
- **Description:** Documentation update. The custom tool notebook
documentation is updated to revome the warning caused by directly
instantiating of the LLMMathChain with an llm which is is deprecated.
The from_llm class method is used instead. LLM output results gets
updated as well.
- **Issue:** no applicable
- **Dependencies:** No dependencies
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @ybouakkaz
Co-authored-by: Yacine Bouakkaz <Yacine.Bouakkaz@evokegroup.com>
This PR adds a simple LangChain template that uses [Anthropic's Claude
on Amazon Bedrock ⛰️](https://aws.amazon.com/bedrock/claude/) to behave
like JCVD.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Going forward, we have a own API `pip install
gradientai`. Therefore gradually removing the self-build packages in
llamaindex, haystack and langchain.
- **Issue:** None.
- **Dependencies:** `pip install gradientai`
- **Tag maintainer:** @michaelfeil
Very simple change in relation to the issue
https://github.com/langchain-ai/langchain/issues/14550
@baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Added logic for re-calling the YandexGPT API in case of
an error
---------
Co-authored-by: Dmitry Tyumentsev <dmitry.tyumentsev@raftds.com>
Description: A new vector store Jaguar is being added. Class, test
scripts, and documentation is added.
Issue: None -- This is the first PR contributing to LangChain
Dependencies: This depends on "pip install -U jaguardb-http-client"
client http package
Tag maintainer: @baskaryan, @eyurtsev, @hwchase1
Twitter handle: @workbot
---------
Co-authored-by: JY <jyjy@jaguardb>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Addded missed docstrings. Fixed inconsistency in docstrings.
**Note** CC @efriis
There were PR errors on
`langchain_experimental/prompt_injection_identifier/hugging_face_identifier.py`
But, I didn't touch this file in this PR! Can it be some cache problems?
I fixed this error.
- **Description:** added support for chat_history for Google
GenerativeAI (to actually use the `chat` API) plus since Gemini
currently doesn't have a support for SystemMessage, added support for it
only if a user provides additional `convert_system_message_to_human`
flag during model initialization (in this case, SystemMessage would be
prepanded to the first HumanMessage)
- **Issue:** #14710
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** lkuligin
---------
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
- updated `Tencent` provider page: added a chat model and document
loader references; company description
- updated Chat model and Document loader pages with descriptions, links
- renamed files to consistent formats; redirected file names
Note:
I was getting this linting error on code that **was not changed in my
PR**!
> Error:
docs/docs/guides/safety/hugging_face_prompt_injection.ipynb:1:1: I001
Import block is un-sorted or un-formatted
> make: *** [Makefile:47: lint_package] Error 1
I've fixed this error in the notebook
Replace this entire comment with:
- **Description:** OPENAI_PROXY is not working for openai==1.3.9, The
`proxies` argument is deprecated. The `http_client` argument should be
passed instead,
- **Issue:** OPENAI_PROXY is not working,
- **Dependencies:** None,
- **Tag maintainer:** @hwchase17 ,
- **Twitter handle:** timothy66666