Commit Graph

60 Commits

Author SHA1 Message Date
Erick Friis
c0dd293f10
partners/groq: release 0.1.10 (#26393) 2024-09-12 17:41:11 +00:00
Erick Friis
54c85087e2
groq: add back streaming tool calls (#26391)
api no longer throws an error

https://console.groq.com/docs/tool-use#streaming
2024-09-12 10:29:45 -07:00
Bagatur
3ec93c2817 standard-tests[patch]: add Ser/Des test 2024-09-04 10:24:06 -07:00
Christophe Bornet
038c287b3a
all: Improve make lint command (#25344)
* Removed `ruff check --select I` as `I` is already selected and checked
in the main `ruff check` command
* Added checks for non-empty `PYTHON_FILES`
* Run `ruff check` only on `PYTHON_FILES`

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-08-23 18:23:52 -07:00
ccurme
c5bf114c0f
together, standard-tests: specify tool_choice in standard tests (#25548)
Here we allow standard tests to specify a value for `tool_choice` via a
`tool_choice_value` property, which defaults to None.

Chat models [available in
Together](https://docs.together.ai/docs/chat-models) have issues passing
standard tool calling tests:
- llama 3.1 models currently [appear to rely on user-side
parsing](https://docs.together.ai/docs/llama-3-function-calling) in
Together;
- Mixtral-8x7B and Mistral-7B (currently tested) consistently do not
call tools in some tests.

Specifying tool_choice also lets us remove an existing `xfail` and use a
smaller model in Groq tests.
2024-08-19 16:37:36 -04:00
ccurme
5a3aaae6dc
groq[patch]: update model used for llama tests (#25542)
`llama-3.1-8b-instant` often fails some of the tool calling standard
tests. Here we update to `llama-3.1-70b-versatile`.
2024-08-19 13:58:06 +00:00
Eugene Yurtsev
d72a08a60d
groq[patch]: Update root validators for pydantic 2 migration (#25402) 2024-08-15 18:46:52 +00:00
ccurme
59b8850909
groq[patch]: update rate limit in integration tests (#25177)
Divide by ~2 to account for testing python 3.8 and 3.12 in parallel.
2024-08-08 13:33:25 +00:00
ccurme
23c9aba575
groq[patch]: allow warnings during tests (#25105)
Among integration packages in libs/partners, Groq is an exception in
that it errors on warnings.

Following https://github.com/langchain-ai/langchain/pull/25084, Groq
fails with

> pydantic.warnings.PydanticDeprecatedSince20: The `__fields__`
attribute is deprecated, use `model_fields` instead. Deprecated in
Pydantic V2.0 to be removed in V3.0.

Here we update the behavior to no longer fail on warning, which is
consistent with the rest of the packages in libs/partners.
2024-08-06 18:02:20 -04:00
ZhangShenao
2c3e3dc6b1
patch[Partners] Unified fix of incorrect variable declarations in all check_imports (#25014)
There are some incorrect declarations of variable `has_failure` in
check_imports. The purpose of this PR is to uniformly fix these errors.
2024-08-03 13:49:41 -04:00
Bagatur
752a71b688
integrations[patch]: release model packages (#24900) 2024-07-31 20:48:20 +00:00
Bagatur
8461934c2b
core[patch], integrations[patch]: convert TypedDict to tool schema support (#24641)
supports following UX

```python
    class SubTool(TypedDict):
        """Subtool docstring"""

        args: Annotated[Dict[str, Any], {}, "this does bar"]

    class Tool(TypedDict):
        """Docstring
        Args:
            arg1: foo
        """

        arg1: str
        arg2: Union[int, str]
        arg3: Optional[List[SubTool]]
        arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"]
        arg5: Annotated[Optional[float], None]
```

- can parse google style docstring
- can use Annotated to specify default value (second arg)
- can use Annotated to specify arg description (third arg)
- can have nested complex types
2024-07-31 18:27:24 +00:00
ccurme
e264ccf484
standard-tests[patch]: update groq and structured output test (#24781)
- Mixtral with Groq has started consistently failing tool calling tests.
Here we restrict testing to llama 3.1.
- `.schema` is deprecated in pydantic proper in favor of
`.model_json_schema`.
2024-07-29 11:10:01 -04:00
Bagatur
b3a23ddf93
integration releases (#24725)
Release anthropic, openai, groq, mistralai, robocorp
2024-07-26 12:30:10 -07:00
Bagatur
4840db6892
docs: standardize groq chat model docs (#24616)
part of #22296

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-25 14:10:49 -07:00
Erick Friis
2c6b9e8771
standard-tests: add override check (#24407) 2024-07-22 23:38:01 +00:00
Erick Friis
3dce2e1d35
all: add release notes to pypi (#24519) 2024-07-22 13:59:13 -07:00
Bagatur
236e957abb
core,groq,openai,mistralai,robocorp,fireworks,anthropic[patch]: Update BaseModel subclass and instance checks to handle both v1 and proper namespaces (#24417)
After this PR chat models will correctly handle pydantic 2 with
bind_tools and with_structured_output.


```python
import pydantic
print(pydantic.__version__)
```
2.8.2

```python
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field

class Add(BaseModel):
    x: int
    y: int

model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)

model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```

```
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_PNUFa4pdfNOYXxIMHc6ps2Do', 'type': 'tool_call'}]
<class '__main__.Add'>
```


```python
from langchain_openai import ChatOpenAI
from pydantic.v1 import BaseModel, Field

class Add(BaseModel):
    x: int
    y: int

model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)

model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```

```python
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_hhiHYP441cp14TtrHKx3Upg0', 'type': 'tool_call'}]
<class '__main__.Add'>
```

Addresses issues: https://github.com/langchain-ai/langchain/issues/22782

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-22 20:07:39 +00:00
Bagatur
71cd6e6feb
groq[patch]: Release 0.1.7 (#24201) 2024-07-12 13:58:19 -07:00
Bagatur
cb5031f22f
integrations[patch]: require core >=0.2.17 (#24207) 2024-07-12 20:54:01 +00:00
Bagatur
5fd1e67808
core[minor], integrations...[patch]: Support ToolCall as Tool input and ToolMessage as Tool output (#24038)
Changes:
- ToolCall, InvalidToolCall and ToolCallChunk can all accept a "type"
parameter now
- LLM integration packages add "type" to all the above
- Tool supports ToolCall inputs that have "type" specified
- Tool outputs ToolMessage when a ToolCall is passed as input
- Tools can separately specify ToolMessage.content and
ToolMessage.raw_output
- Tools emit events for validation errors (using on_tool_error and
on_tool_end)

Example:
```python
@tool("structured_api", response_format="content_and_raw_output")
def _mock_structured_tool_with_raw_output(
    arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> Tuple[str, dict]:
    """A Structured Tool"""
    return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3}


def test_tool_call_input_tool_message_with_raw_output() -> None:
    tool_call: Dict = {
        "name": "structured_api",
        "args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}},
        "id": "123",
        "type": "tool_call",
    }
    expected = ToolMessage("1 True", raw_output=tool_call["args"], tool_call_id="123")
    tool = _mock_structured_tool_with_raw_output
    actual = tool.invoke(tool_call)
    assert actual == expected

    tool_call.pop("type")
    with pytest.raises(ValidationError):
        tool.invoke(tool_call)

    actual_content = tool.invoke(tool_call["args"])
    assert actual_content == expected.content
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 14:54:02 -07:00
ccurme
74c7198906
core, anthropic[patch]: support streaming tool calls when function has no arguments (#23915)
resolves https://github.com/langchain-ai/langchain/issues/23911

When an AIMessageChunk is instantiated, we attempt to parse tool calls
off of the tool_call_chunks.

Here we add a special-case to this parsing, where `""` will be parsed as
`{}`.

This is a reaction to how Anthropic streams tool calls in the case where
a function has no arguments:
```
{'id': 'toolu_01J8CgKcuUVrMqfTQWPYh64r', 'input': {}, 'name': 'magic_function', 'type': 'tool_use', 'index': 1}
{'partial_json': '', 'type': 'tool_use', 'index': 1}
```
The `partial_json` does not accumulate to a valid json string-- most
other providers tend to emit `"{}"` in this case.
2024-07-05 18:57:41 +00:00
Bagatur
a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00
Bagatur
29aa9d6750
groq[patch]: Release 0.1.6 (#23655) 2024-06-29 07:35:23 -04:00
Bagatur
fc8fd49328
openai, anthropic, ...: with_structured_output to pass in explicit tool choice (#23645)
...community, mistralai, groq, fireworks

part of #23644
2024-06-28 16:39:53 -07:00
ccurme
390ee8d971
standard-tests: add test for structured output (#23631)
- add test for structured output
- fix bug with structured output for Azure
- better testing on Groq (break out Mixtral + Llama3 and add xfails
where needed)
2024-06-28 15:01:40 -04:00
Julian Weng
6a1a0d977a
partners[minor]: Fix value error message for with_structured_output (#22877)
Currently, calling `with_structured_output()` with an invalid method
argument raises `Unrecognized method argument. Expected one of
'function_calling' or 'json_format'`, but the JSON mode option [is now
referred
to](https://python.langchain.com/v0.2/docs/how_to/structured_output/#the-with_structured_output-method)
by `'json_mode'`. This fixes that.

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-06-20 15:03:21 +00:00
Bagatur
90559fde70
openai[patch], standard-tests[patch]: don't pass in falsey stop vals (#23153)
adds an image input test to standard-tests as well
2024-06-18 18:13:13 -07:00
Bagatur
d96f67b06f
standard-tests[patch]: Update chat model standard tests (#22378)
- Refactor standard test classes to make them easier to configure
- Update openai to support stop_sequences init param
- Update groq to support stop_sequences init param
- Update fireworks to support max_retries init param
- Update ChatModel.bind_tools to type tool_choice
- Update groq to handle tool_choice="any". **this may be controversial**

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-17 13:37:41 -07:00
Lucas Tucker
7114aed78f
docs: Standardize ChatGroq (#22751)
Updated ChatGroq doc string as per issue
https://github.com/langchain-ai/langchain/issues/22296:"langchain_groq:
updated docstring for ChatGroq in langchain_groq to match that of the
description (in the appendix) provided in issue
https://github.com/langchain-ai/langchain/issues/22296. "

Issue: This PR is in response to issue
https://github.com/langchain-ai/langchain/issues/22296, and more
specifically the ChatGroq model. In particular, this PR updates the
docstring for langchain/libs/partners/groq/langchain_groq/chat_model.py
by adding the following sections: Instantiate, Invoke, Stream, Async,
Tool calling, Structured Output, and Response metadata. I used the
template from the Anthropic implementation and referenced the Appendix
of the original issue post. I also noted that: `usage_metadata `returns
none for all ChatGroq models I tested; there is no mention of image
input in the ChatGroq documentation; unlike that of ChatHuggingFace,
`.stream(messages)` for ChatGroq returned blocks of output.

---------

Co-authored-by: lucast2021 <lucast2021@headroyce.org>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-14 03:08:36 +00:00
ccurme
b626c3ca23
groq[patch]: add usage_metadata to (a)invoke and (a)stream (#22834) 2024-06-13 10:26:27 -04:00
ccurme
b57aa89f34
multiple: implement ls_params (#22621)
implement ls_params for ai21, fireworks, groq.
2024-06-06 16:51:37 +00:00
ccurme
3999761201
multiple: add stop attribute (#22573) 2024-06-06 12:11:52 -04:00
Bagatur
222b1ba112
groq[patch]: Release 0.1.5 (#22500) 2024-06-04 12:01:17 -07:00
ccurme
0ea1e89b2c
groq: read tool calls from .tool_calls attribute (#22096) 2024-05-23 18:16:06 -04:00
ccurme
fbfed65fb1
core, partners: add token usage attribute to AIMessage (#21944)
```python
class UsageMetadata(TypedDict):
    """Usage metadata for a message, such as token counts.

    Attributes:
        input_tokens: (int) count of input (or prompt) tokens
        output_tokens: (int) count of output (or completion) tokens
        total_tokens: (int) total token count
    """

    input_tokens: int
    output_tokens: int
    total_tokens: int
```
```python
class AIMessage(BaseMessage):
    ...
    usage_metadata: Optional[UsageMetadata] = None
    """If provided, token usage information associated with the message."""
    ...
```
2024-05-23 14:21:58 -04:00
ccurme
181dfef118
core, standard tests, partner packages: add test for model params (#21677)
1. Adds `.get_ls_params` to BaseChatModel which returns
```python
class LangSmithParams(TypedDict, total=False):
    ls_provider: str
    ls_model_name: str
    ls_model_type: Literal["chat"]
    ls_temperature: Optional[float]
    ls_max_tokens: Optional[int]
    ls_stop: Optional[List[str]]
```
by default it will only return
```python
{ls_model_type="chat", ls_stop=stop}
```

2. Add these params to inheritable metadata in
`CallbackManager.configure`

3. Implement `.get_ls_params` and populate all params for Anthropic +
all subclasses of BaseChatOpenAI

Sample trace:
https://smith.langchain.com/public/d2962673-4c83-47c7-b51e-61d07aaffb1b/r

**OpenAI**:
<img width="984" alt="Screenshot 2024-05-17 at 10 03 35 AM"
src="https://github.com/langchain-ai/langchain/assets/26529506/2ef41f74-a9df-4e0e-905d-da74fa82a910">

**Anthropic**:
<img width="978" alt="Screenshot 2024-05-17 at 10 06 07 AM"
src="https://github.com/langchain-ai/langchain/assets/26529506/39701c9f-7da5-4f1a-ab14-84e9169d63e7">

**Mistral** (and all others for which params are not yet populated):
<img width="977" alt="Screenshot 2024-05-17 at 10 08 43 AM"
src="https://github.com/langchain-ai/langchain/assets/26529506/37d7d894-fec2-4300-986f-49a5f0191b03">
2024-05-17 13:51:26 -04:00
Erick Friis
aca98fd150
multiple: releases with relaxed core dep (#21724) 2024-05-15 19:29:35 +00:00
Erick Friis
c77d2f2b06
multiple: core 0.2 nonbreaking dep, check_diff community->langchain dep (#21646)
0.2 is not a breaking release for core (but it is for langchain and
community)

To keep the core+langchain+community packages in sync at 0.2, we will
relax deps throughout the ecosystem to tolerate `langchain-core` 0.2
2024-05-13 19:50:36 -07:00
Charlie Marsh
fd94aa8366
partner[patch]: Upgrade to Ruff v0.4.2 (#21108)
## Summary

No new diagnostics (given that the set of enabled rules hasn't changed),
but gains access to our new parser (much faster) and reduced false
positives all around.
2024-04-30 15:06:42 -04:00
back2nix
a1614b88ac
groq[patch]: groq proxy support (#20758)
# Proxy Fix for Groq Class 🐛 🚀

## Description
This PR fixes a bug related to proxy settings in the `Groq` class,
allowing users to connect to LangChain services via a proxy.

## Changes Made
-  FIX support for specifying proxy settings in the `Groq` class.
-  Resolved the bug causing issues with proxy settings.
-  Did not include unit tests and documentation updates.
-  Did not run make format, make lint, and make test to ensure code
quality and functionality because I couldn't get it to run, so I don't
program in Python and couldn't run `ruff`.
-  Ensured that the changes are backwards compatible.
-  No additional dependencies were added to `pyproject.toml`.

### Error Before Fix
```python
Traceback (most recent call last):
  File "/home/bg/Documents/code/github.com/back2nix/test/groq/main.py", line 9, in <module>
    chat = ChatGroq(
           ^^^^^^^^^
  File "/home/bg/Documents/code/github.com/back2nix/test/groq/venv310/lib/python3.11/site-packages/langchain_core/load/serializable.py", line 120, in __init__
    super().__init__(**kwargs)
  File "/home/bg/Documents/code/github.com/back2nix/test/groq/venv310/lib/python3.11/site-packages/pydantic/v1/main.py", line 341, in __init__
    raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for ChatGroq
__root__
  Invalid `http_client` argument; Expected an instance of `httpx.AsyncClient` but got <class 'httpx.Client'> (type=type_error)
  ```
  
### Example usage after fix
  ```python3
import os

import httpx
from langchain_core.prompts import ChatPromptTemplate
from langchain_groq import ChatGroq

chat = ChatGroq(
    temperature=0,
    groq_api_key=os.environ.get("GROQ_API_KEY"),
    model_name="mixtral-8x7b-32768",
    http_client=httpx.Client(
        proxies="socks5://127.0.0.1:1080",
        transport=httpx.HTTPTransport(local_address="0.0.0.0"),
    ),
    http_async_client=httpx.AsyncClient(
        proxies="socks5://127.0.0.1:1080",
        transport=httpx.HTTPTransport(local_address="0.0.0.0"),
    ),
)

system = "You are a helpful assistant."
human = "{text}"
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])

chain = prompt | chat
out = chain.invoke({"text": "Explain the importance of low latency LLMs"})

print(out)
```

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-24 21:58:03 +00:00
Erick Friis
8c95ac3145
docs, multiple: de-beta with_structured_output (#20850) 2024-04-24 19:34:57 +00:00
ccurme
3bcfbcc871
groq: handle null queue_time (#20839) 2024-04-24 09:50:09 -07:00
ccurme
6debadaa70
groq: bump core (#20838) 2024-04-24 11:51:46 -04:00
Erick Friis
7984206c95
groq: release 0.1.3 (#20836)
Fixes #20811
2024-04-24 08:06:06 -07:00
ccurme
06b04b80b8
groq: fix warning filter for integration test (#20806) 2024-04-23 18:11:41 -04:00
ccurme
5a3c65a756
standard tests: add xfails (#20659) 2024-04-23 17:14:16 -04:00
ccurme
4b6b0a87b6
groq[patch]: Make stream robust to ToolMessage (#20417)
```python
from langchain.agents import AgentExecutor, create_tool_calling_agent, tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_groq import ChatGroq


prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant"),
        ("human", "{input}"),
        MessagesPlaceholder("agent_scratchpad"),
    ]
)

model = ChatGroq(model_name="mixtral-8x7b-32768", temperature=0)

@tool
def magic_function(input: int) -> int:
    """Applies a magic function to an input."""
    return input + 2

tools = [magic_function]


agent = create_tool_calling_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

agent_executor.invoke({"input": "what is the value of magic_function(3)?"})
```
```
> Entering new AgentExecutor chain...

Invoking: `magic_function` with `{'input': 3}`


5The value of magic\_function(3) is 5.

> Finished chain.
{'input': 'what is the value of magic_function(3)?',
 'output': 'The value of magic\\_function(3) is 5.'}
```
2024-04-13 15:40:55 -07:00
Erick Friis
e6806a08d4
multiple: standard chat model tests (#20359) 2024-04-11 18:23:13 -07:00
Bagatur
799714c629
release anthropic, fireworks, openai, groq, mistral (#20333) 2024-04-11 09:19:52 -07:00