# Fixed typos (issues #4818 & #4668 & more typos)
- At some places, it said `model = ChatOpenAI(model='gpt-3.5-turbo')`
but should be `model = ChatOpenAI(model_name='gpt-3.5-turbo')`
- Fixes some other typos
Fixes#4818, #4668
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
I would like to contribute with a jupyter notebook example
implementation of an AI Sales Agent using `langchain`.
The bot understands the conversation stage (you can define your own
stages fitting your needs)
using two chains:
1. StageAnalyzerChain - takes context and LLM decides what part of sales
conversation is one in
2. SalesConversationChain - generate next message
Schema:
https://images-genai.s3.us-east-1.amazonaws.com/architecture2.png
my original repo: https://github.com/filip-michalsky/SalesGPT
This example creates a sales person named Ted Lasso who is trying to
sell you mattresses.
Happy to update based on your feedback.
Thanks, Filip
https://twitter.com/FilipMichalsky
- Most important - fixes the relevance_fn name in the notebook to align
with the docs
- Updates comments for the summary:
<img width="787" alt="image"
src="https://user-images.githubusercontent.com/130414180/232520616-2a99e8c3-a821-40c2-a0d5-3f3ea196c9bb.png">
- The new conversation is a bit better, still unfortunate they try to
schedule a followup.
- Rm the max dialogue turns argument to the conversation function
Add a time-weighted memory retriever and a notebook that approximates a
Generative Agent from https://arxiv.org/pdf/2304.03442.pdf
The "daily plan" components are removed for now since they are less
useful without a virtual world, but the memory is an interesting
component to build off.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This PR proposes
- An NLAToolkit method to instantiate from an AI Plugin URL
- A notebook that shows how to use that alongside an example of using a
Retriever object to lookup specs and route queries to them on the fly
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This PR adds a LangChain implementation of CAMEL role-playing example:
https://github.com/lightaime/camel.
I am sorry that I am not that familiar with LangChain. So I only
implement it in a naive way. There may be a better way to implement it.