<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** The pinecone docstring instructs to pass the
embedding query text causing the warning below. It should be the
embeddings object.
warning message: UserWarning: Passing in `embedding` as a Callable is
deprecated. Please pass in an Embeddings object instead.
- **Issue:** NA
- **Dependencies:** None
@baskaryan
Community : Modified doc strings and example notebook for Clarifai
Description:
1. Modified doc strings inside clarifai vectorstore class and
embeddings.
2. Modified notebook examples.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Now the SQL used to delete vector doc from myscale is as follow:
```sql
DELETE FROM collection WHERE id = '1' AND id = '2' AND id = '3'
```
But the expected one should be
```sql
DELETE FROM collection WHERE id IN ('1', '2', '3')
```
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This change fixes the AstraDB logical operator filtering (`$and,`
`$or`).
The `metadata` prefix must not be added if the key is `$and` or `$or`.
- **Description:** The `delete_collection` method deletes an entire
collection regardless of custom ID. The `delete` method deletes
everything with the provided custom IDs regardless of collection. It can
be useful to restrict deletion to both the collection and a set of
custom IDs. This change adds support for that by allowing you to
optionally specify that `delete` should be restricted to the collection
defined on the `PGVector` instance.
- **Description:** This PR is to fix a bug in
semantic_hybrid_search_with_score_and_rerank() function in
langchain_community/vectorstores/azuresearch.py. The hardcoded
"metadata" name is replaced with FIELDS_METADATA variable with an if
block to check if the metadata column exists or not.
- **Issue:** Fixed#15581
- **Dependencies:** No
- **Twitter handle:** None
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
Follow up on https://github.com/langchain-ai/langchain/pull/13048.
This PR intends to simplify the Qdrant async implementation by replacing
the internal GRPC methods with the `QdrantAsyncClient` methods.
This is a backward compatible change with no additional steps required
after merge.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description: Add support for setting the `score_threshold` for
similarity search in SupabaseVectoreStore.
This pull request addresses issue #14438
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Because Milvus' collection_name doesn't support UFT8 characters in other
languages, I want the `collection_descriotion`.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Because Milvus doesn't support nullable fields, but document metadata is
very rich, so it makes more sense to store it as json.
https://github.com/milvus-io/pymilvus/issues/1705#issuecomment-1731112372
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.
This PR integrates LangChain vectorstore with BigQuery Vector Search.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Vlad Kolesnikov <vladkol@google.com>
- **Description:** replace score_threshold with args
- **Issue:** needs a way to pass more options to similarity search
- **Dependencies:** None
- **Twitter handle:** @workbot
---------
Co-authored-by: JY <jyjy@jaguardb>
…tch]: import models from community
ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
- **Description:** Using PGVector vector store, it was only possible to
filter for values equals, in or not in metadata. Extended this feature
to work with the following keywords : IN, NIN, BETWEEN, GT, LT, NE, EQ,
LIKE, CONTAINS, OR, AND
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:**
This PR adds the `**kwargs` parameter to six calls in the `chroma.py`
package. All functions already were able to receive `kwargs` but they
were discarded before.
**Issue:**
When passing `kwargs` to functions in the `chroma.py` package they are
being ignored.
For example:
```
chroma_instance.similarity_search_with_score(
query,
k=100,
include=["metadatas", "documents", "distances", "embeddings"], # this parameter gets ignored
)
```
The `include` parameter does not get passed on to the next function and
does not have any effect.
**Dependencies:**
None
fix spellings
**seperate -> separate**: found more occurrences, see
https://github.com/langchain-ai/langchain/pull/14602
**initialise -> intialize**: the latter is more common in the repo
**pre-defined > predefined**: adding a comma after a prefix is a
delicate matter, but this is a generally accepted word
also, another word that appears in the repo is "fs" (stands for
filesystem), e.g., in `libs/core/langchain_core/prompts/loading.py`
` """Unified method for loading a prompt from LangChainHub or local
fs."""`
Isn't "filesystem" better?
Surrealdb client changes from 0.3.1 to 0.3.2 broke the surrealdb vectore
integration.
This PR updates the code to work with the updated client. The change is
backwards compatible with previous versions of surrealdb client.
Also expanded the vector store implementation to store and retrieve
metadata that's included with the document object.
- **Description:** Fixed jaguar.py to import JaguarHttpClient with try
and catch
- **Issue:** the issue # Unable to use the JaguarHttpClient at run time
- **Dependencies:** It requires "pip install -U jaguardb-http-client"
- **Twitter handle:** workbot
---------
Co-authored-by: JY <jyjy@jaguardb>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**
For the Momento Vector Index (MVI) vector store implementation, pass
through `filter_expression` kwarg to the MVI client, if specified. This
change will enable the MVI self query implementation in a future PR.
Also fixes some integration tests.
Description: Adding Summarization to Vectara, to reflect it provides not
only vector-store type functionality but also can return a summary.
Also added:
MMR capability (in the Vectara platform side)
Updated templates
Updated documentation and IPYNB examples
Tag maintainer: @baskaryan
Twitter handle: @ofermend
---------
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
- **Description:**
This PR fixes the issue faces with duplicate input id in Clarifai
vectorstore class when ingesting documents into the vectorstore more
than the batch size.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: A new vector store Jaguar is being added. Class, test
scripts, and documentation is added.
Issue: None -- This is the first PR contributing to LangChain
Dependencies: This depends on "pip install -U jaguardb-http-client"
client http package
Tag maintainer: @baskaryan, @eyurtsev, @hwchase1
Twitter handle: @workbot
---------
Co-authored-by: JY <jyjy@jaguardb>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Addded missed docstrings. Fixed inconsistency in docstrings.
**Note** CC @efriis
There were PR errors on
`langchain_experimental/prompt_injection_identifier/hugging_face_identifier.py`
But, I didn't touch this file in this PR! Can it be some cache problems?
I fixed this error.
Adds the option for `similarity_score_threshold` when using
`MongoDBAtlasVectorSearch` as a vector store retriever.
Example use:
```
vector_search = MongoDBAtlasVectorSearch.from_documents(...)
qa_retriever = vector_search.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={
"score_threshold": 0.5,
}
)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=qa_retriever,
)
docs = qa({"query": "..."})
```
I've tested this feature locally, using a MongoDB Atlas Cluster with a
vector search index.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: fangkeke <3339698829@qq.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This PR adds an example notebook for the Databricks Vector Search vector
store. It also adds an introduction to the Databricks Vector Search
product on the Databricks's provider page.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** There is a bug in RedisNum filter that filter towards
value 0 will be parsed as "*". This is a fix to it.
- **Issue:** NA
- **Dependencies:** NA
- **Tag maintainer:** NA
- **Twitter handle:** NA