- **Description:** The from__xx methods of FAISS class have hardcoded
InMemoryStore implementation and thereby not let users pass a custom
DocStore implementation,
- **Issue:** no referenced issue,
- **Dependencies:** none,
- **Twitter handle:** ksachdeva
**Description:** changed filtering so that failed filter doesn't add
document to results. Currently filtering is entirely broken and all
documents are returned whether or not they pass the filter.
fixes issue introduced in
https://github.com/langchain-ai/langchain/pull/16190
**Description:**
Implemented unique ID validation in the FAISS component to ensure all
document IDs are distinct. This update resolves issues related to
non-unique IDs, such as inconsistent behavior during deletion processes.
Previously, if this did not find a mypy cache then it wouldnt run
this makes it always run
adding mypy ignore comments with existing uncaught issues to unblock other prs
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:**
Filtering in a FAISS vectorstores is very inflexible and doesn't allow
that many use case. I think supporting callable like this enables a lot:
regular expressions, condition on multiple keys etc. **Note** I had to
manually alter a test. I don't understand if it was falty to begin with
or if there is something funky going on.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** None
Signed-off-by: thiswillbeyourgithub <26625900+thiswillbeyourgithub@users.noreply.github.com>
**Description**: `zip` is iterator that will only produce result once,
so the previous code will cause the `embeddings` to be an empty list.
**Issue**: I could not find a related issue.
**Dependencies**: this PR does not introduce or affect dependencies.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>