- **Description:** When I was running the sparkllm, I found that the
default parameters currently used could no longer run correctly.
- original parameters & values:
- spark_api_url: "wss://spark-api.xf-yun.com/v3.1/chat"
- spark_llm_domain: "generalv3"
```python
# example
from langchain_community.chat_models import ChatSparkLLM
spark = ChatSparkLLM(spark_app_id="my_app_id",
spark_api_key="my_api_key", spark_api_secret="my_api_secret")
spark.invoke("hello")
```
![sparkllm](https://github.com/langchain-ai/langchain/assets/55082429/5369bfdf-4305-496a-bcf5-2d3f59d39414)
So I updated them to 3.5 (same as sparkllm official website). After the
update, they can be used normally.
- new parameters & values:
- spark_api_url: "wss://spark-api.xf-yun.com/v3.5/chat"
- spark_llm_domain: "generalv3.5"
Related to #20085
@baskaryan
Thank you for contributing to LangChain!
community:sparkllm[patch]: standardized init args
updated `spark_api_key` so that aliased to `api_key`. Added integration
test for `sparkllm` to test that it continues to set the same underlying
attribute.
updated temperature with Pydantic Field, added to the integration test.
Ran `make format`,`make test`, `make lint`, `make spell_check`
- Description: callback on_llm_new_token before yield chunk for
_stream/_astream for some chat models, make all chat models in a
consistent behaviour.
- Issue: N/A
- Dependencies: N/A
- Description: Add missing chunk parameter for _stream/_astream for some
chat models, make all chat models in a consistent behaviour.
- Issue: N/A
- Dependencies: N/A
- **Description:** This PR enables LangChain to access the iFlyTek's
Spark LLM via the chat_models wrapper.
- **Dependencies:** websocket-client ^1.6.1
- **Tag maintainer:** @baskaryan
### SparkLLM chat model usage
Get SparkLLM's app_id, api_key and api_secret from [iFlyTek SparkLLM API
Console](https://console.xfyun.cn/services/bm3) (for more info, see
[iFlyTek SparkLLM Intro](https://xinghuo.xfyun.cn/sparkapi) ), then set
environment variables `IFLYTEK_SPARK_APP_ID`, `IFLYTEK_SPARK_API_KEY`
and `IFLYTEK_SPARK_API_SECRET` or pass parameters when using it like the
demo below:
```python3
from langchain.chat_models.sparkllm import ChatSparkLLM
client = ChatSparkLLM(
spark_app_id="<app_id>",
spark_api_key="<api_key>",
spark_api_secret="<api_secret>"
)
```