Commit Graph

82 Commits

Author SHA1 Message Date
Harrison Chase
d1561b74eb
Harrison/cognitive search (#6011)
Co-authored-by: Fabrizio Ruocco <ruoccofabrizio@gmail.com>
2023-06-11 21:15:42 -07:00
Harrison Chase
e05997c25e
Harrison/hologres (#6012)
Co-authored-by: Changgeng Zhao <changgeng@nyu.edu>
Co-authored-by: Changgeng Zhao <zhaochanggeng.zcg@alibaba-inc.com>
2023-06-11 20:56:51 -07:00
Akhil Vempali
d7d629911b
feat: Added filtering option to FAISS vectorstore (#5966)
Inspired by the filtering capability available in ChromaDB, added the
same functionality to the FAISS vectorestore as well. Since FAISS does
not have an inbuilt method of filtering used the approach suggested in
this [thread](https://github.com/facebookresearch/faiss/issues/1079)
Langchain Issue inspiration:
https://github.com/hwchase17/langchain/issues/4572

- [x] Added filtering capability to semantic similarly and MMR
- [x] Added test cases for filtering in
`tests/integration_tests/vectorstores/test_faiss.py`

#### Who can review?

Tag maintainers/contributors who might be interested:

  VectorStores / Retrievers / Memory
  - @dev2049
  - @hwchase17
2023-06-11 13:20:03 -07:00
Ofer Mendelevitch
f8cf09a230
Update to Vectara integration (#5950)
This PR updates the Vectara integration (@hwchase17 ):
* Adds reuse of requests.session to imrpove efficiency and speed.
* Utilizes Vectara's low-level API (instead of standard API) to better
match user's specific chunking with LangChain
* Now add_texts puts all the texts into a single Vectara document so
indexing is much faster.
* updated variables names from alpha to lambda_val (to be consistent
with Vectara docs) and added n_context_sentence so it's available to use
if needed.
* Updates to documentation and tests

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-06-10 16:27:01 -07:00
Harrison Chase
9218684759
Add a new vector store - AwaDB (#5971) (#5992)
Added AwaDB vector store, which is a wrapper over the AwaDB, that can be
used as a vector storage and has an efficient similarity search. Added
integration tests for the vector store
Added jupyter notebook with the example

Delete a unneeded empty file and resolve the
conflict(https://github.com/hwchase17/langchain/pull/5886)

Please check, Thanks!

@dev2049
@hwchase17

---------

<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.

Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.

After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.

Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->

<!-- Remove if not applicable -->

Fixes # (issue)

#### Before submitting

<!-- If you're adding a new integration, please include:

1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use


See contribution guidelines for more information on how to write tests,
lint
etc:


https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->

#### Who can review?

Tag maintainers/contributors who might be interested:

<!-- For a quicker response, figure out the right person to tag with @

  @hwchase17 - project lead

  Tracing / Callbacks
  - @agola11

  Async
  - @agola11

  DataLoaders
  - @eyurtsev

  Models
  - @hwchase17
  - @agola11

  Agents / Tools / Toolkits
  - @vowelparrot

  VectorStores / Retrievers / Memory
  - @dev2049

 -->

---------

Co-authored-by: ljeagle <vincent_jieli@yeah.net>
Co-authored-by: vincent <awadb.vincent@gmail.com>
2023-06-10 15:42:32 -07:00
volodymyr-memsql
a1549901ce
Added SingleStoreDB Vector Store (#5619)
- Added `SingleStoreDB` vector store, which is a wrapper over the
SingleStore DB database, that can be used as a vector storage and has an
efficient similarity search.
- Added integration tests for the vector store
- Added jupyter notebook with the example

@dev2049

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-06-07 20:45:33 -07:00
bnassivet
9355e3f5f5
qdrant vector store - search with relevancy scores (#5781)
Implementation of similarity_search_with_relevance_scores for quadrant
vector store.
As implemented the method is also compatible with other capacities such
as filtering.

Integration tests updated.


#### Who can review?

Tag maintainers/contributors who might be interested:

  VectorStores / Retrievers / Memory
  - @dev2049
2023-06-07 19:26:40 -07:00
bnassivet
062c3c00a2
fixed faiss integ tests (#5808)
Fixes # 5807

Realigned tests with implementation.
Also reinforced folder unicity for the test_faiss_local_save_load test
using date-time suffix

#### Before submitting

- Integration test updated
- formatting and linting ok (locally) 

#### Who can review?

Tag maintainers/contributors who might be interested:

  @hwchase17 - project lead
  VectorStores / Retrievers / Memory
  -@dev2049
2023-06-06 22:07:27 -07:00
Hao Chen
a4c9053d40
Integrate Clickhouse as Vector Store (#5650)
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.

Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.

After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.

Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->

#### Description

This PR is mainly to integrate open source version of ClickHouse as
Vector Store as it is easy for both local development and adoption of
LangChain for enterprises who already have large scale clickhouse
deployment.

ClickHouse is a open source real-time OLAP database with full SQL
support and a wide range of functions to assist users in writing
analytical queries. Some of these functions and data structures perform
distance operations between vectors, [enabling ClickHouse to be used as
a vector
database](https://clickhouse.com/blog/vector-search-clickhouse-p1).
Recently added ClickHouse capabilities like [Approximate Nearest
Neighbour (ANN)
indices](https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/annindexes)
support faster approximate matching of vectors and provide a promising
development aimed to further enhance the vector matching capabilities of
ClickHouse.

In LangChain, some ClickHouse based commercial variant vector stores
like
[Chroma](https://github.com/hwchase17/langchain/blob/master/langchain/vectorstores/chroma.py)
and
[MyScale](https://github.com/hwchase17/langchain/blob/master/langchain/vectorstores/myscale.py),
etc are already integrated, but for some enterprises with large scale
Clickhouse clusters deployment, it will be more straightforward to
upgrade existing clickhouse infra instead of moving to another similar
vector store solution, so we believe it's a valid requirement to
integrate open source version of ClickHouse as vector store.

As `clickhouse-connect` is already included by other integrations, this
PR won't include any new dependencies.

#### Before submitting

<!-- If you're adding a new integration, please include:

1. Added a test for the integration:
https://github.com/haoch/langchain/blob/clickhouse/tests/integration_tests/vectorstores/test_clickhouse.py
2. Added an example notebook and document showing its use: 
* Notebook:
https://github.com/haoch/langchain/blob/clickhouse/docs/modules/indexes/vectorstores/examples/clickhouse.ipynb
* Doc:
https://github.com/haoch/langchain/blob/clickhouse/docs/integrations/clickhouse.md

See contribution guidelines for more information on how to write tests,
lint
etc:


https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->

1. Added a test for the integration:
https://github.com/haoch/langchain/blob/clickhouse/tests/integration_tests/vectorstores/test_clickhouse.py
2. Added an example notebook and document showing its use: 
* Notebook:
https://github.com/haoch/langchain/blob/clickhouse/docs/modules/indexes/vectorstores/examples/clickhouse.ipynb
* Doc:
https://github.com/haoch/langchain/blob/clickhouse/docs/integrations/clickhouse.md


#### Who can review?

Tag maintainers/contributors who might be interested:

<!-- For a quicker response, figure out the right person to tag with @

  @hwchase17 - project lead

  Tracing / Callbacks
  - @agola11

  Async
  - @agola11

  DataLoaders
  - @eyurtsev

  Models
  - @hwchase17
  - @agola11

  Agents / Tools / Toolkits
  - @vowelparrot

  VectorStores / Retrievers / Memory
  - @dev2049

 -->
 
@hwchase17 @dev2049 Could you please help review?

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-06-05 13:32:04 -07:00
Paul-Emile Brotons
92f218207b
removing client+namespace in favor of collection (#5610)
removing client+namespace in favor of collection for an easier
instantiation and to be similar to the typescript library

@dev2049
2023-06-03 16:27:31 -07:00
Caleb Ellington
c5a7a85a4e
fix chroma update_document to embed entire documents, fixes a characer-wise embedding bug (#5584)
# Chroma update_document full document embeddings bugfix

Chroma update_document takes a single document, but treats the
page_content sting of that document as a list when getting the new
document embedding.

This is a two-fold problem, where the resulting embedding for the
updated document is incorrect (it's only an embedding of the first
character in the new page_content) and it calls the embedding function
for every character in the new page_content string, using many tokens in
the process.

Fixes #5582


Co-authored-by: Caleb Ellington <calebellington@Calebs-MBP.hsd1.ca.comcast.net>
2023-06-02 11:12:48 -07:00
Kacper Łukawski
71a7c16ee0
Fix: Qdrant ids (#5515)
# Fix Qdrant ids creation

There has been a bug in how the ids were created in the Qdrant vector
store. They were previously calculated based on the texts. However,
there are some scenarios in which two documents may have the same piece
of text but different metadata, and that's a valid case. Deduplication
should be done outside of insertion.

It has been fixed and covered with the integration tests.
---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-06-02 08:57:34 -07:00
Sheng Han Lim
3bae595182
Add texts with embeddings to PGVector wrapper (#5500)
Similar to #1813 for faiss, this PR is to extend functionality to pass
text and its vector pair to initialize and add embeddings to the
PGVector wrapper.

Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
  - @dev2049
2023-05-31 17:31:52 -07:00
Kacper Łukawski
8bcaca435a
Feature: Qdrant filters supports (#5446)
# Support Qdrant filters

Qdrant has an [extensive filtering
system](https://qdrant.tech/documentation/concepts/filtering/) with rich
type support. This PR makes it possible to use the filters in Langchain
by passing an additional param to both the
`similarity_search_with_score` and `similarity_search` methods.

## Who can review?

@dev2049 @hwchase17

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-31 02:26:16 -07:00
Kacper Łukawski
f93d256190
Feat: Add batching to Qdrant (#5443)
# Add batching to Qdrant

Several people requested a batching mechanism while uploading data to
Qdrant. It is important, as there are some limits for the maximum size
of the request payload, and without batching implemented in Langchain,
users need to implement it on their own. This PR exposes a new optional
`batch_size` parameter, so all the documents/texts are loaded in batches
of the expected size (64, by default).

The integration tests of Qdrant are extended to cover two cases:
1. Documents are sent in separate batches.
2. All the documents are sent in a single request.
2023-05-30 15:33:54 -07:00
Paul-Emile Brotons
a61b7f7e7c
adding MongoDBAtlasVectorSearch (#5338)
# Add MongoDBAtlasVectorSearch for the python library

Fixes #5337
---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-30 07:59:01 -07:00
Martin Holecek
44b48d9518
Fix update_document function, add test and documentation. (#5359)
# Fix for `update_document` Function in Chroma

## Summary
This pull request addresses an issue with the `update_document` function
in the Chroma class, as described in
[#5031](https://github.com/hwchase17/langchain/issues/5031#issuecomment-1562577947).
The issue was identified as an `AttributeError` raised when calling
`update_document` due to a missing corresponding method in the
`Collection` object. This fix refactors the `update_document` method in
`Chroma` to correctly interact with the `Collection` object.

## Changes
1. Fixed the `update_document` method in the `Chroma` class to correctly
call methods on the `Collection` object.
2. Added the corresponding test `test_chroma_update_document` in
`tests/integration_tests/vectorstores/test_chroma.py` to reflect the
updated method call.
3. Added an example and explanation of how to use the `update_document`
function in the Jupyter notebook tutorial for Chroma.

## Test Plan
All existing tests pass after this change. In addition, the
`test_chroma_update_document` test case now correctly checks the
functionality of `update_document`, ensuring that the function works as
expected and updates the content of documents correctly.

## Reviewers
@dev2049

This fix will ensure that users are able to use the `update_document`
function as expected, without encountering the previous
`AttributeError`. This will enhance the usability and reliability of the
Chroma class for all users.

Thank you for considering this pull request. I look forward to your
feedback and suggestions.
2023-05-29 06:39:25 -07:00
Ofer Mendelevitch
c81fb88035
Vectara (#5069)
# Vectara Integration

This PR provides integration with Vectara. Implemented here are:
* langchain/vectorstore/vectara.py
* tests/integration_tests/vectorstores/test_vectara.py
* langchain/retrievers/vectara_retriever.py
And two IPYNB notebooks to do more testing:
* docs/modules/chains/index_examples/vectara_text_generation.ipynb
* docs/modules/indexes/vectorstores/examples/vectara.ipynb

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-24 01:24:58 -07:00
Jettro Coenradie
b950022894
Fixes issue #5072 - adds additional support to Weaviate (#5085)
Implementation is similar to search_distance and where_filter

# adds 'additional' support to Weaviate queries

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-22 18:57:10 -07:00
Donger
039f8f1abb
Add the usage of SSL certificates for Elasticsearch and user password authentication (#5058)
Enhance the code to support SSL authentication for Elasticsearch when
using the VectorStore module, as previous versions did not provide this
capability.
@dev2049

---------

Co-authored-by: caidong <zhucaidong1992@gmail.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-22 11:51:32 -07:00
Eugene Yurtsev
0ff59569dc
Adds 'IN' metadata filter for pgvector for checking set presence (#4982)
# Adds "IN" metadata filter for pgvector to all checking for set
presence

PGVector currently supports metadata filters of the form:
```
{"filter": {"key": "value"}}
```
which will return documents where the "key" metadata field is equal to
"value".

This PR adds support for metadata filters of the form:
```
{"filter": {"key": { "IN" : ["list", "of", "values"]}}}
```

Other vector stores support this via an "$in" syntax. I chose to use
"IN" to match postgres' syntax, though happy to switch.
Tested locally with PGVector and ChatVectorDBChain.


@dev2049

---------

Co-authored-by: jade@spanninglabs.com <jade@spanninglabs.com>
2023-05-19 13:53:23 -07:00
Davis Chase
55baa0d153
Update redis integration tests (#4937) 2023-05-18 10:22:17 -07:00
yujiosaka
6561efebb7
Accept uuids kwargs for weaviate (#4800)
# Accept uuids kwargs for weaviate

Fixes #4791
2023-05-16 15:26:46 -07:00
Magnus Friberg
d126276693
Specify which data to return from chromadb (#4393)
# Improve the Chroma get() method by adding the optional "include"
parameter.

The Chroma get() method excludes embeddings by default. You can
customize the response by specifying the "include" parameter to
selectively retrieve the desired data from the collection.

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-16 14:43:09 -07:00
Anirudh Suresh
03ac39368f
Fixing DeepLake Overwrite Flag (#4683)
# Fix DeepLake Overwrite Flag Issue

Fixes Issue #4682: essentially, setting overwrite to False in the
DeepLake constructor still triggers an overwrite, because the logic is
just checking for the presence of "overwrite" in kwargs. The fix is
simple--just add some checks to inspect if "overwrite" in kwargs AND
kwargs["overwrite"]==True.

Added a new test in
tests/integration_tests/vectorstores/test_deeplake.py to reflect the
desired behavior.


Co-authored-by: Anirudh Suresh <ani@Anirudhs-MBP.cable.rcn.com>
Co-authored-by: Anirudh Suresh <ani@Anirudhs-MacBook-Pro.local>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-05-15 17:39:16 -07:00
Evan Jones
f668251948
parameterized distance metrics; lint; format; tests (#4375)
# Parameterize Redis vectorstore index

Redis vectorstore allows for three different distance metrics: `L2`
(flat L2), `COSINE`, and `IP` (inner product). Currently, the
`Redis._create_index` method hard codes the distance metric to COSINE.

I've parameterized this as an argument in the `Redis.from_texts` method
-- pretty simple.

Fixes #4368 

## Before submitting

I've added an integration test showing indexes can be instantiated with
all three values in the `REDIS_DISTANCE_METRICS` literal. An example
notebook seemed overkill here. Normal API documentation would be more
appropriate, but no standards are in place for that yet.

## Who can review?

Not sure who's responsible for the vectorstore module... Maybe @eyurtsev
/ @hwchase17 / @agola11 ?
2023-05-11 00:20:01 -07:00
Davis Chase
46b100ea63
Add DocArray vector stores (#4483)
Thanks to @anna-charlotte and @jupyterjazz for the contribution! Made
few small changes to get it across the finish line

---------

Signed-off-by: anna-charlotte <charlotte.gerhaher@jina.ai>
Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
Co-authored-by: anna-charlotte <charlotte.gerhaher@jina.ai>
Co-authored-by: jupyterjazz <saba.sturua@jina.ai>
Co-authored-by: Saba Sturua <45267439+jupyterjazz@users.noreply.github.com>
2023-05-10 15:22:16 -07:00
Aivin V. Solatorio
6335cb5b3a
Add support for Qdrant nested filter (#4354)
# Add support for Qdrant nested filter

This extends the filter functionality for the Qdrant vectorstore. The
current filter implementation is limited to a single-level metadata
structure; however, Qdrant supports nested metadata filtering. This
extends the functionality for users to maximize the filter functionality
when using Qdrant as the vectorstore.

Reference: https://qdrant.tech/documentation/filtering/#nested-key

---------

Signed-off-by: Aivin V. Solatorio <avsolatorio@gmail.com>
2023-05-09 10:34:11 -07:00
Naveen Tatikonda
782df1db10
OpenSearch: Add Similarity Search with Score (#4089)
### Description
Add `similarity_search_with_score` method for OpenSearch to return
scores along with documents in the search results

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-05-08 16:35:21 -07:00
George
2324f19c85
Update qdrant interface (#3971)
Hello

1) Passing `embedding_function` as a callable seems to be outdated and
the common interface is to pass `Embeddings` instance

2) At the moment `Qdrant.add_texts` is designed to be used with
`embeddings.embed_query`, which is 1) slow 2) causes ambiguity due to 1.
It should be used with `embeddings.embed_documents`

This PR solves both problems and also provides some new tests
2023-05-05 16:46:40 -07:00
Davis Chase
2451310975
Chroma fix mmr (#3897)
Fixes #3628, thanks @derekmoeller for the issue!
2023-05-01 10:47:15 -07:00
Harrison Chase
0c0f14407c
Harrison/tair (#3770)
Co-authored-by: Seth Huang <848849+seth-hg@users.noreply.github.com>
2023-04-28 21:25:33 -07:00
Harrison Chase
be7a8e0824
Harrison/redis cache (#3766)
Co-authored-by: Tyler Hutcherson <tyler.hutcherson@redis.com>
2023-04-28 20:47:18 -07:00
Harrison Chase
a35bbbfa9e
Harrison/lancedb (#3634)
Co-authored-by: Minh Le <minhle@canva.com>
2023-04-27 08:14:36 -07:00
Harrison Chase
ab749fa1bb
Harrison/opensearch logic (#3631)
Co-authored-by: engineer-matsuo <95115586+engineer-matsuo@users.noreply.github.com>
2023-04-26 22:08:03 -07:00
cs0lar
440c98e24b
Fix/issue 2695 (#3608)
## Background
fixes #2695  

## Changes
The `add_text` method uses the internal embedding function if one was
passes to the `Weaviate` constructor.
NOTE: the latest merge on the `Weaviate` class made the specification of
a `weaviate_api_key` mandatory which might not be desirable for all
users and connection methods (for example weaviate also support Embedded
Weaviate which I am happy to add support to here if people think it's
desirable). I wrapped the fetching of the api key into a try catch in
order to allow the `weaviate_api_key` to be unspecified. Do let me know
if this is unsatisfactory.

## Test Plan
added test for `add_texts` method.
2023-04-26 21:45:03 -07:00
Harrison Chase
408a0183cd
Harrison/weaviate (#3494)
Co-authored-by: Nick Rubell <nick@rubell.com>
2023-04-24 22:15:32 -07:00
cs0lar
3033c6b964
fixes #1214 (#3003)
### Background

Continuing to implement all the interface methods defined by the
`VectorStore` class. This PR pertains to implementation of the
`max_marginal_relevance_search_by_vector` method.

### Changes

- a `max_marginal_relevance_search_by_vector` method implementation has
been added in `weaviate.py`
- tests have been added to the the new method
- vcr cassettes have been added for the weaviate tests

### Test Plan

Added tests for the `max_marginal_relevance_search_by_vector`
implementation

### Change Safety

- [x] I have added tests to cover my changes
2023-04-24 11:50:55 -07:00
Davit Buniatyan
2c0023393b
Deep Lake mini upgrades (#3375)
Improvements
* set default num_workers for ingestion to 0
* upgraded notebooks for avoiding dataset creation ambiguity
* added `force_delete_dataset_by_path`
* bumped deeplake to 3.3.0
* creds arg passing to deeplake object that would allow custom S3

Notes
* please double check if poetry is not messed up (thanks!)

Asks
* Would be great to create a shared slack channel for quick questions

---------

Co-authored-by: Davit Buniatyan <d@activeloop.ai>
2023-04-23 21:23:54 -07:00
Harrison Chase
a6664be79c
Harrison/myscale (#3352)
Co-authored-by: Fangrui Liu <fangruil@moqi.ai>
Co-authored-by: 刘 方瑞 <fangrui.liu@outlook.com>
Co-authored-by: Fangrui.Liu <fangrui.liu@ubc.ca>
2023-04-22 09:17:38 -07:00
Filip Haltmayer
215dcc2d26
Refactor Milvus/Zilliz (#3047)
Refactoring milvus/zilliz to clean up and have a more consistent
experience.

Signed-off-by: Filip Haltmayer <filip.haltmayer@zilliz.com>
2023-04-22 08:26:19 -07:00
Richy Wang
88a8f59aa7
Add a full PostgresSQL syntax database 'AnalyticDB' as vector store. (#3135)
Hi there!
I'm excited to open this PR to add support for using a fully Postgres
syntax compatible database 'AnalyticDB' as a vector.
As AnalyticDB has been proved can be used with AutoGPT,
ChatGPT-Retrieve-Plugin, and LLama-Index, I think it is also good for
you.
AnalyticDB is a distributed Alibaba Cloud-Native vector database. It
works better when data comes to large scale. The PR includes:

- [x]  A new memory: AnalyticDBVector
- [x]  A suite of integration tests verifies the AnalyticDB integration

I have read your [contributing
guidelines](72b7d76d79/.github/CONTRIBUTING.md).
And I have passed the tests below
- [x]  make format
- [x]  make lint
- [x]  make coverage
- [x]  make test
2023-04-22 08:25:41 -07:00
Naveen Tatikonda
bb6c459f7a
OpenSearch: Add Support for Lucene Filter (#3201)
### Description
Add Support for Lucene Filter. When you specify a Lucene filter for a
k-NN search, the Lucene algorithm decides whether to perform an exact
k-NN search with pre-filtering or an approximate search with modified
post-filtering. This filter is supported only for approximate search
with the indexes that are created using `lucene` engine.

OpenSearch Documentation -
https://opensearch.org/docs/latest/search-plugins/knn/filter-search-knn/#lucene-k-nn-filter-implementation

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-04-20 20:42:53 -07:00
Naveen Tatikonda
3453b7457c
OpenSearch: Add Support for Boolean Filter with ANN search (#3038)
### Description
Add Support for Boolean Filter with ANN search
Documentation -
https://opensearch.org/docs/latest/search-plugins/knn/filter-search-knn/#boolean-filter-with-ann-search

### Issues Resolved
https://github.com/hwchase17/langchain/issues/2924

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-04-17 20:26:26 -07:00
Jan Backes
a9310a3e8b
Add Annoy as VectorStore (#2939)
Adds Annoy (https://github.com/spotify/annoy) as vector Store. 

RESOLVES hwchase17/langchain#2842

discord ref:
https://discord.com/channels/1038097195422978059/1051632794427723827/1096089994168377354

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: vowelparrot <130414180+vowelparrot@users.noreply.github.com>
2023-04-16 13:44:04 -07:00
cs0lar
8b9e02da9d
Fix/issue 1213 (#2932)
### Background

Continuing to implement all the interface methods defined by the
`VectorStore` class. This PR pertains to implementation of the
`max_marginal_relevance_search` method.

### Changes

- a `max_marginal_relevance_search` method implementation has been added
in `weaviate.py`
- tests have been added to the the new method
- vcr cassettes have been added for the weaviate tests

### Test Plan

Added tests for the `max_marginal_relevance_search` implementation

### Change Safety

- [x] I have added tests to cover my changes
2023-04-16 13:11:30 -07:00
vowelparrot
4ffc58e07b
Add similarity_search_with_normalized_similarities (#2916)
Add a method that exposes a similarity search with corresponding
normalized similarity scores. Implement only for FAISS now.

### Motivation:

Some memory definitions combine `relevance` with other scores, like
recency , importance, etc.

While many (but not all) of the `VectorStore`'s expose a
`similarity_search_with_score` method, they don't all interpret the
units of that score (depends on the distance metric and whether or not
the the embeddings are normalized).

This PR proposes a `similarity_search_with_normalized_similarities`
method that lets consumers of the vector store not have to worry about
the metric and embedding scale.

*Most providers default to euclidean distance, with Pinecone being one
exception (defaults to cosine _similarity_).*

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-04-15 21:06:08 -07:00
Davit Buniatyan
b3a5b51728
[minor] Deep Lake auth improvements in docs, kwargs pass, faster tests (#2927)
Minor cosmetic changes 
- Activeloop environment cred authentication in notebooks with
`getpass.getpass` (instead of CLI which not always works)
- much faster tests with Deep Lake pytest mode on 
- Deep Lake kwargs pass

Notes
- I put pytest environment creds inside `vectorstores/conftest.py`, but
feel free to suggest a better location. For context, if I put in
`test_deeplake.py`, `ruff` doesn't let me to set them before import
deeplake

---------

Co-authored-by: Davit Buniatyan <d@activeloop.ai>
2023-04-15 10:49:16 -07:00
Harrison Chase
1e9378d0a8
Harrison/weaviate fixes (#2872)
Co-authored-by: cs0lar <cristiano.solarino@gmail.com>
Co-authored-by: cs0lar <cristiano.solarino@brightminded.com>
2023-04-13 22:37:34 -07:00
sergerdn
04c458a270
feat: improve pinecone tests (#2806)
Improve the integration tests for Pinecone by adding an `.env.example`
file for local testing. Additionally, add some dev dependencies
specifically for integration tests.

This change also helps me understand how Pinecone deals with certain
things, see related issues
https://github.com/hwchase17/langchain/issues/2484
https://github.com/hwchase17/langchain/issues/2816
2023-04-13 21:49:31 -07:00