- **Description:** Update IBM watsonx.ai docs and add IBM as a provider
docs
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** :
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
**Description:**
Change type hint on `QuerySQLDataBaseTool` to be compatible with
SQLAlchemy v1.4.x.
**Issue:**
Users locked to `SQLAlchemy < 2.x` are unable to import
`QuerySQLDataBaseTool`.
closes https://github.com/langchain-ai/langchain/issues/17819
**Dependencies:**
None
**Description:** This PR adds an `__init__` method to the
NeuralDBVectorStore class, which takes in a NeuralDB object to
instantiate the state of NeuralDBVectorStore.
**Issue:** N/A
**Dependencies:** N/A
**Twitter handle:** N/A
**Description:** This PR changes the module import path for SQLDatabase
in the documentation
**Issue:** Updates the documentation to reflect the move of integrations
to langchain-community
- **Description:** The URL in the tigris tutorial was htttps instead of
https, leading to a bad link.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** Speucey
**Description:**
Updated documentation for DeepLake init method.
Especially the exec_option docs needed improvement, but did a general
cleanup while I was looking at it.
**Issue:** n/a
**Dependencies:** None
---------
Co-authored-by: Nathan Voxland <nathan@voxland.net>
- **Description:** In order to override the bool value of
"fetch_schema_from_transport" in the GraphQLAPIWrapper, a
"fetch_schema_from_transport" value needed to be added to the
"_EXTRA_OPTIONAL_TOOLS" dictionary in load_tools in the "graphql" key.
The parameter "fetch_schema_from_transport" must also be passed in to
the GraphQLAPIWrapper to allow reading of the value when creating the
client. Passing as an optional parameter is probably best to avoid
breaking changes. This change is necessary to support GraphQL instances
that do not support fetching schema, such as TigerGraph. More info here:
[TigerGraph GraphQL Schema
Docs](https://docs.tigergraph.com/graphql/current/schema)
- **Threads handle:** @zacharytoliver
---------
Co-authored-by: Zachary Toliver <zt10191991@hotmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Add missing chunk parameter for _stream/_astream for some
chat models, make all chat models in a consistent behaviour.
- Issue: N/A
- Dependencies: N/A
**Description:** Here is a minimal example to illustrate behavior:
```python
from langchain_core.runnables import RunnableLambda
def my_function(*args, **kwargs):
return 3 + kwargs.get("n", 0)
runnable = RunnableLambda(my_function).bind(n=1)
assert 4 == runnable.invoke({})
assert [4] == list(runnable.stream({}))
assert 4 == await runnable.ainvoke({})
assert [4] == [item async for item in runnable.astream({})]
```
Here, `runnable.invoke({})` and `runnable.stream({})` work fine, but
`runnable.ainvoke({})` raises
```
TypeError: RunnableLambda._ainvoke.<locals>.func() got an unexpected keyword argument 'n'
```
and similarly for `runnable.astream({})`:
```
TypeError: RunnableLambda._atransform.<locals>.func() got an unexpected keyword argument 'n'
```
Here we assume that this behavior is undesired and attempt to fix it.
**Issue:** https://github.com/langchain-ai/langchain/issues/17241,
https://github.com/langchain-ai/langchain/discussions/16446
In this pull request, we introduce the add_images method to the
SingleStoreDB vector store class, expanding its capabilities to handle
multi-modal embeddings seamlessly. This method facilitates the
incorporation of image data into the vector store by associating each
image's URI with corresponding document content, metadata, and either
pre-generated embeddings or embeddings computed using the embed_image
method of the provided embedding object.
the change includes integration tests, validating the behavior of the
add_images. Additionally, we provide a notebook showcasing the usage of
this new method.
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Issue in the API Reference:
If the `Classes` of `Functions` section is empty, it still shown in API
Reference. Here is an
[example](https://api.python.langchain.com/en/latest/core_api_reference.html#module-langchain_core.agents)
where `Functions` table is empty but still presented.
It happens only if this section has only the "private" members (with
names started with '_'). Those members are not shown but the whole
member section (empty) is shown.
- **Description:**
The existing `RedisCache` implementation lacks proper handling for redis
client failures, such as `ConnectionRefusedError`, leading to subsequent
failures in pipeline components like LLM calls. This pull request aims
to improve error handling for redis client issues, ensuring a more
robust and graceful handling of such errors.
- **Issue:** Fixes#16866
- **Dependencies:** No new dependency
- **Twitter handle:** N/A
Co-authored-by: snsten <>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>