- **Description:** to support not only publicly available Hugging Face
endpoints, but also protected ones (created with "Inference Endpoints"
Hugging Face feature), I have added ability to specify custom api_url.
But if not specified, default behaviour won't change
- **Issue:** #9181,
- **Dependencies:** no extra dependencies
**Description:** The way the condition is checked in the
`return_stopped_response` function of `OpenAIAgent` may not be correct,
when the value returned is `AgentFinish` from the tools it does not work
properly.
Thanks for review, @baskaryan, @eyurtsev, @hwchase17.
- **Description:** Adds `llm_chain_kwargs` to `BaseRetrievalQA.from_llm`
so these can be passed to the LLM at runtime,
- **Issue:** https://github.com/langchain-ai/langchain/issues/14216,
---------
Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
- **Description:** As part of my conversation with Cerebrium team,
`model_api_request` will be no longer available in cerebrium lib so it
needs to be replaced.
- **Issue:** #12705 12705,
- **Dependencies:** Cerebrium team (agreed)
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** No official Twitter account sorry :D
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Adding a possibility to use asynchronous callback
handler in human-in-the-loop validation tool. Very useful, for example,
if you want to implement a validation over Telegram bot.
**Issue:** -
**Dependencies:** -
---------
Co-authored-by: Daniyar_Supiyev <daniyar_supiyev@epam.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description** An integration to allow the Yellowbrick Data Warehouse
to function as a vector store
---------
Co-authored-by: markcusack <markcusack@markcusacksmac.lan>
Co-authored-by: markcusack <markcusack@Mark-Cusack-sMac.local>
- **Description**: This PR addresses an issue with the OpenAI API
streaming response, where initially the key (arguments) is provided but
the value is None. Subsequently, it updates with {"arguments": "{\n"},
leading to a type inconsistency that causes an exception. The specific
error encountered is ValueError: additional_kwargs["arguments"] already
exists in this message, but with a different type. This change aims to
resolve this inconsistency and ensure smooth API interactions.
- **Issue**: None.
- **Dependencies**: None.
- **Tag maintainer**: @eyurtsev
This is an updated version of #13229 based on the refactored code.
Credit goes to @superken01.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** some vector stores have a flag for try deleting the
collection before creating it (such as ´vectorpg´). This is a useful
flag when prototyping indexing pipelines and also for integration tests.
Added the bool flag `pre_delete_collection ` to the constructor (default
False)
- **Tag maintainer:** @hemidactylus
- **Twitter handle:** nicoloboschi
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** This extends `OpenAIEmbeddings` to add support for
non-`tiktoken` based embeddings, specifically for use with the new
`text-generation-webui` API (`--extensions openai`) which does not
support `tiktoken` encodings, but rather strings
- **Issue:** Not found,
- **Dependencies:** HuggingFace `transformers.AutoTokenizer` is new
dependency for running the model without `tiktoken`
- **Tag maintainer:** @baskaryan based on last commit for
`langchain-core` refactor
- **Twitter handle:** @xychelsea
Modified the tokenization process to be model-agnostic, allowing for
both OpenAI and non-OpenAI model tokenizations, by setting the new
default `bool` flag `tiktoken_enabled` to `False`. This requeires
HuggingFace’s AutoTokenizer and handling tokenization for models
requiring different preprocessing steps to generate a chunked string
request rather than a list of integers.
Updated the embeddings generation process to accommodate non-OpenAI
models. This includes converting tokenized text into embeddings using
OpenAI’s and Hugging Face’s model architectures.
-->
Hi,
I made some code changes on the Hologres vector store to improve the
data insertion performance.
Also, this version of the code uses `hologres-vector` library. This
library is more convenient for us to update, and more efficient in
performance.
The code has passed the format/lint/spell check. I have run the unit
test for Hologres connecting to my own database.
Please check this PR again and tell me if anything needs to change.
Best,
Changgeng,
Developer @ Alibaba Cloud
Co-authored-by: Changgeng Zhao <zhaochanggeng.zcg@alibaba-inc.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Fixes the Mathpix PDF loader API integration.
Specifically, ensures that Mathpix auth headers are provided for every
request, and ensures that we recognize all errors that can occur during
a request. Also, the option to provide API keys as kwargs never actually
worked before, but now that's fixed too.
- **Issue:** #11249
- **Dependencies:** None
- **Description:**
This PR introduces the Slack toolkit to LangChain, which allows users to
read and write to Slack using the Slack API. Specifically, we've added
the following tools.
1. get_channel: Provides a summary of all the channels in a workspace.
2. get_message: Gets the message history of a channel.
3. send_message: Sends a message to a channel.
4. schedule_message: Sends a message to a channel at a specific time and
date.
- **Issue:** This pull request addresses [Add Slack Toolkit
#11747](https://github.com/langchain-ai/langchain/issues/11747)
- **Dependencies:** package`slack_sdk`
Note: For this toolkit to function you will need to add a Slack app to
your workspace. Additional info can be found
[here](https://slack.com/help/articles/202035138-Add-apps-to-your-Slack-workspace).
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ArianneLavada <ariannelavada@gmail.com>
Co-authored-by: ArianneLavada <84357335+ArianneLavada@users.noreply.github.com>
Co-authored-by: ariannelavada@gmail.com <you@example.com>
Unnecessarily overridden methods:
- Give the idea the subclass is doing something special (when it isn't)
- Block CTRL-click to the actual method
This PR removes some unnecessarily overridden methods in
`StdOutCallbackHandler`
Supercedes https://github.com/langchain-ai/langchain/pull/12858
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Hi,
There is some unintended behavior in Html2TextTransformer.
The current code is **directly modifying the original documents that are
passed as arguments to the function.**
Therefore, not only the return of the function but also the input
variables are being modified simultaneously.
**To resolve this, I added unit test code as well.**
reference link: [Shallow vs Deep Copying of Python
Objects](https://realpython.com/copying-python-objects/)
Thanks! ☺️
Before, we need to use `params` to pass extra parameters:
```python
from langchain.llms import Databricks
Databricks(..., params={"temperature": 0.0})
```
Now, we can directly specify extra params:
```python
from langchain.llms import Databricks
Databricks(..., temperature=0.0)
```
This PR adds an "Azure AI data" document loader, which allows Azure AI
users to load their registered data assets as a document object in
langchain.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
See PR title.
From what I can see, `poetry` will auto-include this. Please let me know
if I am missing something here.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
… properly
Fixed a bug that was causing the streaming transfer to not work
properly.
- **Description:
1、The on_llm_new_token method in the streaming callback can now be
called properly in streaming transfer mode.
2、In streaming transfer mode, LLM can now correctly output the complete
response instead of just the first token.
- **Tag maintainer: @wangxuqi
- **Twitter handle: @kGX7XJjuYxzX9Km
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
* Add support for passing a specific file to the file system blob loader
* Allow specifying a class parameter for the parser for the generic
loader
```python
class AudioLoader(GenericLoader):
@staticmethod
def get_parser(**kwargs):
return MyAudioParser(**kwargs):
```
The intent of the GenericLoader is to provide on-ramps from different
sources (e.g., web, s3, file system).
An alternative is to use pipelining syntax or creating a Pipeline
```
FileSystemBlobLoader(...) | MyAudioParser
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** just a little change of ErnieChatBot class
description, sugguesting user to use more suitable class
- **Issue:** none,
- **Dependencies:** none,
- **Tag maintainer:** @baskaryan ,
- **Twitter handle:** none
**Description**
`embed_with_retry` is for sync operations and not for async operations.
Use `async_embed_with_retry` for appropriate async operations.
I'm using `OpenAIEmbedding(http_client=httpx.AsyncClient())` with only
async operations.
However, I got an error when I use `embedding.aembed_documents` because
`embed_with_retry` uses sync OpenAI client with async http client.
Description
when the desc of arg in python docstring contains ":", the
`_parse_python_function_docstring` will raise **ValueError: too many
values to unpack (expected 2)**.
A sample desc would be:
"""
Args:
error_arg: this is an arg with an additional ":" symbol
"""
So, set `maxsplit` parameter to fix it.
The number of times I try to format a string (especially in lcel) is
embarrassingly high. Think this may be more actionable than the default
error message. Now I get nice helpful errors
```
KeyError: "Input to ChatPromptTemplate is missing variable 'input'. Expected: ['input'] Received: ['dialogue']"
```
**Description:** By combining the document timestamp refresh within a
single call to update(), this enables batching of multiple documents in
a single SQL statement. This is important for non-local databases where
tens of milliseconds has a huge impact on performance when doing
document-by-document SQL statements.
**Issue:** #11935
**Dependencies:** None
**Tag maintainer:** @eyurtsev
CC @baskaryan @hwchase17 @jmorganca
Having a bit of trouble importing `langchain_experimental` from a
notebook, will figure it out tomorrow
~Ah and also is blocked by #13226~
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Related to https://github.com/mlflow/mlflow/pull/10420. MLflow AI
gateway will be deprecated and replaced by the `mlflow.deployments`
module. Happy to split this PR if it's too large.
```
pip install git+https://github.com/langchain-ai/langchain.git@refs/pull/13699/merge#subdirectory=libs/langchain
```
## Dependencies
Install mlflow from https://github.com/mlflow/mlflow/pull/10420:
```
pip install git+https://github.com/mlflow/mlflow.git@refs/pull/10420/merge
```
## Testing plan
The following code works fine on local and databricks:
<details><summary>Click</summary>
<p>
```python
"""
Setup
-----
mlflow deployments start-server --config-path examples/gateway/openai/config.yaml
databricks secrets create-scope <scope>
databricks secrets put-secret <scope> openai-api-key --string-value $OPENAI_API_KEY
Run
---
python /path/to/this/file.py secrets/<scope>/openai-api-key
"""
from langchain.chat_models import ChatMlflow, ChatDatabricks
from langchain.embeddings import MlflowEmbeddings, DatabricksEmbeddings
from langchain.llms import Databricks, Mlflow
from langchain.schema.messages import HumanMessage
from langchain.chains.loading import load_chain
from mlflow.deployments import get_deploy_client
import uuid
import sys
import tempfile
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
###############################
# MLflow
###############################
chat = ChatMlflow(
target_uri="http://127.0.0.1:5000", endpoint="chat", params={"temperature": 0.1}
)
print(chat([HumanMessage(content="hello")]))
embeddings = MlflowEmbeddings(target_uri="http://127.0.0.1:5000", endpoint="embeddings")
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])
llm = Mlflow(
target_uri="http://127.0.0.1:5000",
endpoint="completions",
params={"temperature": 0.1},
)
print(llm("I am"))
llm_chain = LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["adjective"],
template="Tell me a {adjective} joke",
),
)
print(llm_chain.run(adjective="funny"))
# serialization/deserialization
with tempfile.TemporaryDirectory() as tmpdir:
print(tmpdir)
path = f"{tmpdir}/llm.yaml"
llm_chain.save(path)
loaded_chain = load_chain(path)
print(loaded_chain("funny"))
###############################
# Databricks
###############################
secret = sys.argv[1]
client = get_deploy_client("databricks")
# External - chat
name = f"chat-{uuid.uuid4()}"
client.create_endpoint(
name=name,
config={
"served_entities": [
{
"name": "test",
"external_model": {
"name": "gpt-4",
"provider": "openai",
"task": "llm/v1/chat",
"openai_config": {
"openai_api_key": "{{" + secret + "}}",
},
},
}
],
},
)
try:
chat = ChatDatabricks(
target_uri="databricks", endpoint=name, params={"temperature": 0.1}
)
print(chat([HumanMessage(content="hello")]))
finally:
client.delete_endpoint(endpoint=name)
# External - embeddings
name = f"embeddings-{uuid.uuid4()}"
client.create_endpoint(
name=name,
config={
"served_entities": [
{
"name": "test",
"external_model": {
"name": "text-embedding-ada-002",
"provider": "openai",
"task": "llm/v1/embeddings",
"openai_config": {
"openai_api_key": "{{" + secret + "}}",
},
},
}
],
},
)
try:
embeddings = DatabricksEmbeddings(target_uri="databricks", endpoint=name)
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])
finally:
client.delete_endpoint(endpoint=name)
# External - completions
name = f"completions-{uuid.uuid4()}"
client.create_endpoint(
name=name,
config={
"served_entities": [
{
"name": "test",
"external_model": {
"name": "gpt-3.5-turbo-instruct",
"provider": "openai",
"task": "llm/v1/completions",
"openai_config": {
"openai_api_key": "{{" + secret + "}}",
},
},
}
],
},
)
try:
llm = Databricks(
endpoint_name=name,
model_kwargs={"temperature": 0.1},
)
print(llm("I am"))
finally:
client.delete_endpoint(endpoint=name)
# Foundation model - chat
chat = ChatDatabricks(
endpoint="databricks-llama-2-70b-chat", params={"temperature": 0.1}
)
print(chat([HumanMessage(content="hello")]))
# Foundation model - embeddings
embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
print(embeddings.embed_query("hello")[:3])
# Foundation model - completions
llm = Databricks(
endpoint_name="databricks-mpt-7b-instruct", model_kwargs={"temperature": 0.1}
)
print(llm("hello"))
llm_chain = LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["adjective"],
template="Tell me a {adjective} joke",
),
)
print(llm_chain.run(adjective="funny"))
# serialization/deserialization
with tempfile.TemporaryDirectory() as tmpdir:
print(tmpdir)
path = f"{tmpdir}/llm.yaml"
llm_chain.save(path)
loaded_chain = load_chain(path)
print(loaded_chain("funny"))
```
Output:
```
content='Hello! How can I assist you today?'
[-0.025058426, -0.01938856, -0.027781019]
[-0.025058426, -0.01938856, -0.027781019]
sorry, but I cannot continue the sentence as it is incomplete. Can you please provide more information or context?
Sure, here's a classic one for you:
Why don't scientists trust atoms?
Because they make up everything!
/var/folders/dz/cd_nvlf14g9g__n3ph0d_0pm0000gp/T/tmpx_4no6ad
{'adjective': 'funny', 'text': "Sure, here's a classic one for you:\n\nWhy don't scientists trust atoms?\n\nBecause they make up everything!"}
content='Hello! How can I assist you today?'
[-0.025058426, -0.01938856, -0.027781019]
[-0.025058426, -0.01938856, -0.027781019]
a 23 year old female and I am currently studying for my master's degree
content="\nHello! It's nice to meet you. Is there something I can help you with or would you like to chat for a bit?"
[0.051055908203125, 0.007221221923828125, 0.003879547119140625]
[0.051055908203125, 0.007221221923828125, 0.003879547119140625]
hello back
Well, I don't really know many jokes, but I do know this funny story...
/var/folders/dz/cd_nvlf14g9g__n3ph0d_0pm0000gp/T/tmp7_ds72ex
{'adjective': 'funny', 'text': " Well, I don't really know many jokes, but I do know this funny story..."}
```
</p>
</details>
The existing workflow doesn't break:
<details><summary>click</summary>
<p>
```python
import uuid
import mlflow
from mlflow.models import ModelSignature
from mlflow.types.schema import ColSpec, Schema
class MyModel(mlflow.pyfunc.PythonModel):
def predict(self, context, model_input):
return str(uuid.uuid4())
with mlflow.start_run():
mlflow.pyfunc.log_model(
"model",
python_model=MyModel(),
pip_requirements=["mlflow==2.8.1", "cloudpickle<3"],
signature=ModelSignature(
inputs=Schema(
[
ColSpec("string", "prompt"),
ColSpec("string", "stop"),
]
),
outputs=Schema(
[
ColSpec(name=None, type="string"),
]
),
),
registered_model_name=f"lang-{uuid.uuid4()}",
)
# Manually create a serving endpoint with the registered model and run
from langchain.llms import Databricks
llm = Databricks(endpoint_name="<name>")
llm("hello") # 9d0b2491-3d13-487c-bc02-1287f06ecae7
```
</p>
</details>
## Follow-up tasks
(This PR is too large. I'll file a separate one for follow-up tasks.)
- Update `docs/docs/integrations/providers/mlflow_ai_gateway.mdx` and
`docs/docs/integrations/providers/databricks.md`.
---------
Signed-off-by: harupy <17039389+harupy@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
…parameters.
In Langchain's `dumps()` function, I've added a `**kwargs` parameter.
This allows users to pass additional parameters to the underlying
`json.dumps()` function, providing greater flexibility and control over
JSON serialization.
Many parameters available in `json.dumps()` can be useful or even
necessary in specific situations. For example, when using an Agent with
return_intermediate_steps set to true, the output is a list of
AgentAction objects. These objects can't be serialized without using
Langchain's `dumps()` function.
The issue arises when using the Agent with a language other than
English, which may contain non-ASCII characters like 'é'. The default
behavior of `json.dumps()` sets ensure_ascii to true, converting
`{"name": "José"}` into `{"name": "Jos\u00e9"}`. This can make the
output hard to read, especially in the case of intermediate steps in
agent logs.
By allowing users to pass additional parameters to `json.dumps()` via
Langchain's dumps(), we can solve this problem. For instance, users can
set `ensure_ascii=False` to maintain the original characters.
This update also enables users to pass other useful `json.dumps()`
parameters like `sort_keys`, providing even more flexibility.
The implementation takes into account edge cases where a user might pass
a "default" parameter, which is already defined by `dumps()`, or an
"indent" parameter, which is also predefined if `pretty=True` is set.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
### Description
Hello,
The [integration_test
README](https://github.com/langchain-ai/langchain/tree/master/libs/langchain/tests)
was indicating incorrect paths for the `.env.example` and `.env` files.
`tests/.env.example` ->`tests/integration_tests/.env.example`
While it’s a minor error, it could **potentially lead to confusion** for
the document’s readers, so I’ve made the necessary corrections.
Thank you! ☺️
### Related Issue
- https://github.com/langchain-ai/langchain/pull/2806
**Description:**
Added support for a Pandas DataFrame OutputParser with format
instructions, along with unit tests and a demo notebook. Namely, we've
added the ability to request data from a DataFrame, have the LLM parse
the request, and then use that request to retrieve a well-formatted
response.
Within LangChain, it seamlessly integrates with language models like
OpenAI's `text-davinci-003`, facilitating streamlined interaction using
the format instructions (just like the other output parsers).
This parser structures its requests as
`<operation/column/row>[<optional_array_params>]`. The instructions
detail permissible operations, valid columns, and array formats,
ensuring clarity and adherence to the required format.
For example:
- When the LLM receives the input: "Retrieve the mean of `num_legs` from
rows 1 to 3."
- The provided format instructions guide the LLM to structure the
request as: "mean:num_legs[1..3]".
The parser processes this formatted request, leveraging the LLM's
understanding to extract the mean of `num_legs` from rows 1 to 3 within
the Pandas DataFrame.
This integration allows users to communicate requests naturally, with
the LLM transforming these instructions into structured commands
understood by the `PandasDataFrameOutputParser`. The format instructions
act as a bridge between natural language queries and precise DataFrame
operations, optimizing communication and data retrieval.
**Issue:**
- https://github.com/langchain-ai/langchain/issues/11532
**Dependencies:**
No additional dependencies :)
**Tag maintainer:**
@baskaryan
**Twitter handle:**
No need. :)
---------
Co-authored-by: Wasee Alam <waseealam@protonmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:**
When using Vald, only insecure grpc connection was supported, so secure
connection is now supported.
In addition, grpc metadata can be added to Vald requests to enable
authentication with a token.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Response_if_no_docs_found is not implemented in
ConversationalRetrievalChain for async code paths. Implemented it and
added test cases
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Description
This PR implements Self-Query Retriever for MongoDB Atlas vector store.
I've implemented the comparators and operators that are supported by
MongoDB Atlas vector store according to the section titled "Atlas Vector
Search Pre-Filter" from
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/.
Namely:
```
allowed_comparators = [
Comparator.EQ,
Comparator.NE,
Comparator.GT,
Comparator.GTE,
Comparator.LT,
Comparator.LTE,
Comparator.IN,
Comparator.NIN,
]
"""Subset of allowed logical operators."""
allowed_operators = [
Operator.AND,
Operator.OR
]
```
Translations from comparators/operators to MongoDB Atlas filter
operators(you can find the syntax in the "Atlas Vector Search
Pre-Filter" section from the previous link) are done using the following
dictionary:
```
map_dict = {
Operator.AND: "$and",
Operator.OR: "$or",
Comparator.EQ: "$eq",
Comparator.NE: "$ne",
Comparator.GTE: "$gte",
Comparator.LTE: "$lte",
Comparator.LT: "$lt",
Comparator.GT: "$gt",
Comparator.IN: "$in",
Comparator.NIN: "$nin",
}
```
In visit_structured_query() the filters are passed as "pre_filter" and
not "filter" as in the MongoDB link above since langchain's
implementation of MongoDB atlas vector
store(libs\langchain\langchain\vectorstores\mongodb_atlas.py) in
_similarity_search_with_score() sets the "filter" key to have the value
of the "pre_filter" argument.
```
params["filter"] = pre_filter
```
Test cases and documentation have also been added.
# Issue
#11616
# Dependencies
No new dependencies have been added.
# Documentation
I have created the notebook mongodb_atlas_self_query.ipynb outlining the
steps to get the self-query mechanism working.
I worked closely with [@Farhan-Faisal](https://github.com/Farhan-Faisal)
on this PR.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
# Description
We implemented a simple tool for accessing the Merriam-Webster
Collegiate Dictionary API
(https://dictionaryapi.com/products/api-collegiate-dictionary).
Here's a simple usage example:
```py
from langchain.llms import OpenAI
from langchain.agents import load_tools, initialize_agent, AgentType
llm = OpenAI()
tools = load_tools(["serpapi", "merriam-webster"], llm=llm) # Serp API gives our agent access to Google
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run("What is the english word for the german word Himbeere? Define that word.")
```
Sample output:
```
> Entering new AgentExecutor chain...
I need to find the english word for Himbeere and then get the definition of that word.
Action: Search
Action Input: "English word for Himbeere"
Observation: {'type': 'translation_result'}
Thought: Now I have the english word, I can look up the definition.
Action: MerriamWebster
Action Input: raspberry
Observation: Definitions of 'raspberry':
1. rasp-ber-ry, noun: any of various usually black or red edible berries that are aggregate fruits consisting of numerous small drupes on a fleshy receptacle and that are usually rounder and smaller than the closely related blackberries
2. rasp-ber-ry, noun: a perennial plant (genus Rubus) of the rose family that bears raspberries
3. rasp-ber-ry, noun: a sound of contempt made by protruding the tongue between the lips and expelling air forcibly to produce a vibration; broadly : an expression of disapproval or contempt
4. black raspberry, noun: a raspberry (Rubus occidentalis) of eastern North America that has a purplish-black fruit and is the source of several cultivated varieties —called also blackcap
Thought: I now know the final answer.
Final Answer: Raspberry is an english word for Himbeere and it is defined as any of various usually black or red edible berries that are aggregate fruits consisting of numerous small drupes on a fleshy receptacle and that are usually rounder and smaller than the closely related blackberries.
> Finished chain.
```
# Issue
This closes#12039.
# Dependencies
We added no extra dependencies.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Lara <63805048+larkgz@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Update the document for drop box loader + made the
messages more verbose when loading pdf file since people were getting
confused
- **Issue:** #13952
- **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17,
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Added a tool called RedditSearchRun and an
accompanying API wrapper, which searches Reddit for posts with support
for time filtering, post sorting, query string and subreddit filtering.
- **Issue:** #13891
- **Dependencies:** `praw` module is used to search Reddit
- **Tag maintainer:** @baskaryan , and any of the other maintainers if
needed
- **Twitter handle:** None.
Hello,
This is our first PR and we hope that our changes will be helpful to the
community. We have run `make format`, `make lint` and `make test`
locally before submitting the PR. To our knowledge, our changes do not
introduce any new errors.
Our PR integrates the `praw` package which is already used by
RedditPostsLoader in LangChain. Nonetheless, we have added integration
tests and edited unit tests to test our changes. An example notebook is
also provided. These changes were put together by me, @Anika2000,
@CharlesXu123, and @Jeremy-Cheng-stack
Thank you in advance to the maintainers for their time.
---------
Co-authored-by: What-Is-A-Username <49571870+What-Is-A-Username@users.noreply.github.com>
Co-authored-by: Anika2000 <anika.sultana@mail.utoronto.ca>
Co-authored-by: Jeremy Cheng <81793294+Jeremy-Cheng-stack@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Added some of the more endpoints supported by serpapi
that are not suported on langchain at the moment, like google trends,
google finance, google jobs, and google lens
- **Issue:** [Add support for many of the querying endpoints with
serpapi #11811](https://github.com/langchain-ai/langchain/issues/11811)
---------
Co-authored-by: zushenglu <58179949+zushenglu@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Ian Xu <ian.xu@mail.utoronto.ca>
Co-authored-by: zushenglu <zushenglu1809@gmail.com>
Co-authored-by: KevinT928 <96837880+KevinT928@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Volc Engine MaaS serves as an enterprise-grade,
large-model service platform designed for developers. You can visit its
homepage at https://www.volcengine.com/docs/82379/1099455 for details.
This change will facilitate developers to integrate quickly with the
platform.
- **Issue:** None
- **Dependencies:** volcengine
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @he1v3tica
---------
Co-authored-by: lvzhong <lvzhong@bytedance.com>
- **Description:** use post field validation for `CohereRerank`
- **Issue:** #12899 and #13058
- **Dependencies:**
- **Tag maintainer:** @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Update 5 pdf document loaders in
`langchain.document_loaders.pdf`, to store a url in the metadata
(instead of a temporary, local file path) if the user provides a web
path to a pdf: `PyPDFium2Loader`, `PDFMinerLoader`,
`PDFMinerPDFasHTMLLoader`, `PyMuPDFLoader`, and `PDFPlumberLoader` were
updated.
- The updates follow the approach used to update `PyPDFLoader` for the
same behavior in #12092
- The `PyMuPDFLoader` changes required additional work in updating
`langchain.document_loaders.parsers.pdf.PyMuPDFParser` to be able to
process either an `io.BufferedReader` (from local pdf) or `io.BytesIO`
(from online pdf)
- The `PDFMinerPDFasHTMLLoader` change used a simpler approach since the
metadata is assigned by the loader and not the parser
- **Issue:** Fixes#7034
- **Dependencies:** None
```python
# PyPDFium2Loader example:
# old behavior
>>> from langchain.document_loaders import PyPDFium2Loader
>>> loader = PyPDFium2Loader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': '/var/folders/7z/d5dt407n673drh1f5cm8spj40000gn/T/tmpm5oqa92f/tmp.pdf', 'page': 0}
# new behavior
>>> from langchain.document_loaders import PyPDFium2Loader
>>> loader = PyPDFium2Loader('https://arxiv.org/pdf/1706.03762.pdf')
>>> docs = loader.load()
>>> docs[0].metadata
{'source': 'https://arxiv.org/pdf/1706.03762.pdf', 'page': 0}
```
- **Description:** Updated to remove deprecated parameter penalty_alpha,
and use string variation of prompt rather than json object for better
flexibility. - **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** N/A
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** @symbldotai
---------
Co-authored-by: toshishjawale <toshish@symbl.ai>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Instead of using JSON-like syntax to describe node and relationship
properties we changed to a shorter and more concise schema description
Old:
```
Node properties are the following:
[{'properties': [{'property': 'name', 'type': 'STRING'}], 'labels': 'Movie'}, {'properties': [{'property': 'name', 'type': 'STRING'}], 'labels': 'Actor'}]
Relationship properties are the following:
[]
The relationships are the following:
['(:Actor)-[:ACTED_IN]->(:Movie)']
```
New:
```
Node properties are the following:
Movie {name: STRING},Actor {name: STRING}
Relationship properties are the following:
The relationships are the following:
(:Actor)-[:ACTED_IN]->(:Movie)
```
Implements
[#12115](https://github.com/langchain-ai/langchain/issues/12115)
Who can review?
@baskaryan , @eyurtsev , @hwchase17
Integrated Stack Exchange API into Langchain, enabling access to diverse
communities within the platform. This addition enhances Langchain's
capabilities by allowing users to query Stack Exchange for specialized
information and engage in discussions. The integration provides seamless
interaction with Stack Exchange content, offering content from varied
knowledge repositories.
A notebook example and test cases were included to demonstrate the
functionality and reliability of this integration.
- Add StackExchange as a tool.
- Add unit test for the StackExchange wrapper and tool.
- Add documentation for the StackExchange wrapper and tool.
If you have time, could you please review the code and provide any
feedback as necessary! My team is welcome to any suggestions.
---------
Co-authored-by: Yuval Kamani <yuvalkamani@gmail.com>
Co-authored-by: Aryan Thakur <aryanthakur@Aryans-MacBook-Pro.local>
Co-authored-by: Manas1818 <79381912+manas1818@users.noreply.github.com>
Co-authored-by: aryan-thakur <61063777+aryan-thakur@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** The class allows to only select between a few
predefined prompts from the paper. That is not ideal, since other use
cases might need a custom prompt. The changes made allow for this. To be
able to monitor those, I also added functionality to supply a custom
run_manager.
- **Issue:** no issue, but a new feature,
- **Dependencies:** none,
- **Tag maintainer:** @hwchase17,
- **Twitter handle:** @yvesloy
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Support providing whatever extra parameters you want
to the Mathpix PDF loader API request.
- **Issue:** #12773
- **Dependencies:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Adds a tqdm progress bar to GooglePalmEmbeddings when
embedding a list.
- **Issue:** #13637
- **Dependencies:** TQDM as a main dependency (instead of extra)
Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
---------
Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This PR is fixing an attributeError: object endpoint has no attribute
"_public_match_client" when using gcp matching engine with private VPC
network.
@baskaryan, @eyurtsev, @hwchase17.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** As of OpenAI's Python package 1.0, the existing
DallEAPIWrapper does not work correctly, so the example in the LangChain
Documentation link below does not work either.
https://python.langchain.com/docs/integrations/tools/dalle_image_generator
Also, since OpenAI only supports DALL-E version 2 or version 3, I
modified the DallEAPIWrapper to support it.
- **Issue:** #13825
- **Twitter handle:** ggeutzzang
- **Description:** According to the document
https://cloud.baidu.com/doc/WENXINWORKSHOP/s/6lp69is2a, add ERNIE-Bot-8K
model support for ErnieBotChat.
- **Dependencies:** Before using the ERNIE-Bot-8K, you should have the
model's access authority.
Replace this entire comment with:
- **Description:** updates `create_llm_result` function within
`openai.py` to consider latest `params`,
- **Issue:** #8928
- **Dependencies:** -,
- **Tag maintainer:** -
- **Twitter handle:** [burkomr](https://twitter.com/burkomr)
<!-- If no one reviews your PR within a few days, please @-mention one
of @baskaryan, @eyurtsev, @hwchase17. -->
---------
Co-authored-by: Burak Ömür <burakomur@retorio.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Replace this entire comment with:
- **Description:** VertexAI models are now GA, moved away from using
preview ones from the SDK
- **Issue:** #13606
---------
Co-authored-by: Nuno Campos <nuno@boringbits.io>
**Description:**
Repair Wikipedia document loader `load_max_docs` and improve test
coverage.
**Issue:**
The Wikipedia document loader was not respecting the `load_max_docs`
paramater (not reported) and would always return a maximum of 10
documents. This is because the API wrapper (in `utilities/wikipedia.py`)
wasn't passing `top_k_results` to the underlying [Wikipedia
library](https://wikipedia.readthedocs.io/en/latest/code.html#module-wikipedia).
By default this library returns 10 results.
The default number of results for the document loader has been reduced
from 100 to 25. This is because loading 100 results takes a very long
time and is an inconvenient default. It should possibly be 10.
In addition, the documentation for the loader reported that there was a
hard limit (300) on the number of documents returned. In actuality 300
is the maximum Wikipedia query character length set by the API wrapper.
Tests have been added for the document loader (previously missing) and
to test the correct numbers of documents are being returned by each
class, both by default, and when overridden. Also repaired is the
`assert_docs` test which has been updated to correctly test for the
default metadata (which includes `source` in recent releases).
**Dependencies:**
nil
**Tag maintainer:**
@leo-gan
**Twitter handle:**
@queenvictoria
### **Description:**
Previously `python_repl` was a built-in tool, but now it has been moved
to `langchain_experimental`.
When I use `load_tools` I get an error:
```python
In [1]: from langchain.agents import load_tools
In [2]: load_tools(["python_repl"])
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[2], line 1
----> 1 load_tools(["python_repl"])
File ~/workspace/langchain/libs/langchain/langchain/agents/load_tools.py:530, in load_tools(tool_names, llm, callbacks, **kwargs)
528 tool_names.extend(requests_method_tools)
529 elif name in _BASE_TOOLS:
--> 530 tools.append(_BASE_TOOLS[name]())
531 elif name in _LLM_TOOLS:
532 if llm is None:
File ~/workspace/langchain/libs/langchain/langchain/agents/load_tools.py:84, in _get_python_repl()
83 def _get_python_repl() -> BaseTool:
---> 84 raise ImportError(
85 "This tool has been moved to langchain experiment. "
86 "This tool has access to a python REPL. "
87 "For best practices make sure to sandbox this tool. "
88 "Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md "
89 "To keep using this code as is, install langchain experimental and "
90 "update relevant imports replacing 'langchain' with 'langchain_experimental'"
91 )
ImportError: This tool has been moved to langchain experiment. This tool has access to a python REPL. For best practices make sure to sandbox this tool. Read https://github.com/langchain-ai/langchain/blob/master/SECURITY.md To keep using this code as is, install langchain experimental and update relevant imports replacing 'langchain' with 'langchain_experimental'
```
In this case, it will be very confusing. I think it is no longer a
built-in tool now, so it can be removed from `_BASE_TOOLS`
### **Issue:**
https://github.com/langchain-ai/langchain/issues/13858,
https://github.com/langchain-ai/langchain/issues/13859,
https://github.com/langchain-ai/langchain/issues/13856
### **Twitter handle:**
[lin_bob57617](https://twitter.com/lin_bob57617)
The `integrations/vectorstores/matchingengine.ipynb` example has the
"Google Vertex AI Vector Search" title. This place this Title in the
wrong order in the ToC (it is sorted by the file name).
- Renamed `integrations/vectorstores/matchingengine.ipynb` into
`integrations/vectorstores/google_vertex_ai_vector_search.ipynb`.
- Updated a correspondent comment in docstring
- Rerouted old URL to a new URL
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
It was :
`from langchain.schema.prompts import BasePromptTemplate`
but because of the breaking change in the ns, it is now
`from langchain.schema.prompt_template import BasePromptTemplate`
This bug prevents building the API Reference for the langchain_experimental
There are the following main changes in this PR:
1. Rewrite of the DocugamiLoader to not do any XML parsing of the DGML
format internally, and instead use the `dgml-utils` library we are
separately working on. This is a very lightweight dependency.
2. Added MMR search type as an option to multi-vector retriever, similar
to other retrievers. MMR is especially useful when using Docugami for
RAG since we deal with large sets of documents within which a few might
be duplicates and straight similarity based search doesn't give great
results in many cases.
We are @docugami on twitter, and I am @tjaffri
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
- **Description:** Adds a retriever implementation for [Knowledge Bases
for Amazon Bedrock](https://aws.amazon.com/bedrock/knowledge-bases/), a
new service announced at AWS re:Invent, shortly before this PR was
opened. This depends on the `bedrock-agent-runtime` service, which will
be included in a future version of `boto3` and of `botocore`. We will
open a follow-up PR documenting the minimum required versions of `boto3`
and `botocore` after that information is available.
- **Issue:** N/A
- **Dependencies:** `boto3>=1.33.2, botocore>=1.33.2`
- **Tag maintainer:** @baskaryan
- **Twitter handles:** `@pjain7` `@dead_letter_q`
This PR includes a documentation notebook under
`docs/docs/integrations/retrievers`, which I (@dlqqq) have verified
independently.
EDIT: `bedrock-agent-runtime` service is now included in
`boto3>=1.33.2`:
5cf793f493
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Addressing incorrect order being sent to callbacks / tracers, due to the
nature of threading
---------
Co-authored-by: Nuno Campos <nuno@boringbits.io>
Add arg to omit streamed_output list, in cases where final_output is
enough this saves bandwidth
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This PR rearranges the docstring for the `AstraDB` vector store class so
as to have all useful information in the _class_ docstring for ease of
reading.
(incidentally, due to an oversight, the docstring that was in the
constructor ended up buried below some lines of code, thereby
disappearing altogether from accessibility. Apologies.)
- **Description:** Updates to `AnthropicFunctions` to be compatible with
the OpenAI `function_call` functionality.
- **Issue:** The functionality to indicate `auto`, `none` and a forced
function_call was not completely implemented in the existing code.
- **Dependencies:** None
- **Tag maintainer:** @baskaryan , and any of the other maintainers if
needed.
- **Twitter handle:** None
I have specifically tested this functionality via AWS Bedrock with the
Claude-2 and Claude-Instant models.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** We are adding functionality to extract message
content from the `attributedBody` field of the database, in case the
content is not in the `text` field.
- **Issue:** Closes#13326 and #10680
- **Dependencies:** None.
- **Tag maintainer:** @eyurtsev, @hwchase17
---------
Co-authored-by: onotate <johnp.pham@mail.utoronto.ca>
- **Description:** Previously `MarkdownHeaderTextSplitter` did not
consider tilde-fenced code blocks
(https://spec.commonmark.org/0.30/#fenced-code-blocks). This PR fixes
that.
````md
# Bug caused by previous implementation:
~~~py
foo()
# This is a comment that would be considered header
bar()
~~~
````
- **Tag maintainer:** @baskaryan
Several bug fixes:
- emails: instead of `bcc` the `cc` is used.
- errors in the truncation descriptions
- no truncation of the `message_search`
Several updates:
- generalized UTC format
- truncation limit can be changed now in _call()
Fixes#13407.
This workaround consists in letting the RunnableLambda create its
self.afunc from its self.func when self.afunc is not provided; the
change has no dependency.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
```
---- chunk 1
{'actions': [AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})])],
'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]}
---- chunk 2
{'messages': [FunctionMessage(content="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”", name='Search')],
'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]), observation="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”")]}
---- chunk 3
{'actions': [AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}})])],
'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}})]}
---- chunk 4
{'messages': [FunctionMessage(content='25 years', name='Search')],
'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}})]), observation='25 years')]}
---- chunk 5
{'actions': [AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}})])],
'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}})]}
---- chunk 6
{'messages': [FunctionMessage(content='Answer: 3.991298452658078', name='Calculator')],
'steps': [AgentStep(action=AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}})]), observation='Answer: 3.991298452658078')]}
---- chunk 7
{'messages': [AIMessage(content="Leonardo DiCaprio's current girlfriend is the Italian model Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 power is approximately 3.99.")],
'output': "Leonardo DiCaprio's current girlfriend is the Italian model "
'Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 '
'power is approximately 3.99.'}
---- final
{'actions': [AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]),
AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}})]),
AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}})])],
'messages': [AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}}),
FunctionMessage(content="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”", name='Search'),
AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}}),
FunctionMessage(content='25 years', name='Search'),
AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}}),
FunctionMessage(content='Answer: 3.991298452658078', name='Calculator'),
AIMessage(content="Leonardo DiCaprio's current girlfriend is the Italian model Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 power is approximately 3.99.")],
'output': "Leonardo DiCaprio's current girlfriend is the Italian model "
'Vittoria Ceretti, who is 25 years old. Her age raised to the 0.43 '
'power is approximately 3.99.',
'steps': [AgentStep(action=AgentActionMessageLog(tool='Search', tool_input="Leo DiCaprio's current girlfriend", log="\nInvoking: `Search` with `Leo DiCaprio's current girlfriend`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Leo DiCaprio\'s current girlfriend"\n}'}})]), observation="According to Us, the 48-year-old actor is now “exclusively” dating Italian model Vittoria Ceretti. A source told Us that DiCaprio is “completely smitten” with Ceretti, and their relationship is “going so well that Leo's actually being exclusive.”"),
AgentStep(action=AgentActionMessageLog(tool='Search', tool_input='Vittoria Ceretti age', log='\nInvoking: `Search` with `Vittoria Ceretti age`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Search', 'arguments': '{\n "__arg1": "Vittoria Ceretti age"\n}'}})]), observation='25 years'),
AgentStep(action=AgentActionMessageLog(tool='Calculator', tool_input='25^0.43', log='\nInvoking: `Calculator` with `25^0.43`\n\n\n', message_log=[AIMessageChunk(content='', additional_kwargs={'function_call': {'name': 'Calculator', 'arguments': '{\n "__arg1": "25^0.43"\n}'}})]), observation='Answer: 3.991298452658078')]}
```
- **Description:** Existing model used for Prompt Injection is quite
outdated but we fine-tuned and open-source a new model based on the same
model deberta-v3-base from Microsoft -
[laiyer/deberta-v3-base-prompt-injection](https://huggingface.co/laiyer/deberta-v3-base-prompt-injection).
It supports more up-to-date injections and less prone to
false-positives.
- **Dependencies:** No
- **Tag maintainer:** -
- **Twitter handle:** @alex_yaremchuk
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** The experimental package needs to be compatible with
the usage of importing agents
For example, if i use `from langchain.agents import
create_pandas_dataframe_agent`, running the program will prompt the
following information:
```
Traceback (most recent call last):
File "/Users/dongwm/test/main.py", line 1, in <module>
from langchain.agents import create_pandas_dataframe_agent
File "/Users/dongwm/test/venv/lib/python3.11/site-packages/langchain/agents/__init__.py", line 87, in __getattr__
raise ImportError(
ImportError: create_pandas_dataframe_agent has been moved to langchain experimental. See https://github.com/langchain-ai/langchain/discussions/11680 for more information.
Please update your import statement from: `langchain.agents.create_pandas_dataframe_agent` to `langchain_experimental.agents.create_pandas_dataframe_agent`.
```
But when I changed to `from langchain_experimental.agents import
create_pandas_dataframe_agent`, it was actually wrong:
```python
Traceback (most recent call last):
File "/Users/dongwm/test/main.py", line 2, in <module>
from langchain_experimental.agents import create_pandas_dataframe_agent
ImportError: cannot import name 'create_pandas_dataframe_agent' from 'langchain_experimental.agents' (/Users/dongwm/test/venv/lib/python3.11/site-packages/langchain_experimental/agents/__init__.py)
```
I should use `from langchain_experimental.agents.agent_toolkits import
create_pandas_dataframe_agent`. In order to solve the problem and make
it compatible, I added additional import code to the
langchain_experimental package. Now it can be like this Used `from
langchain_experimental.agents import create_pandas_dataframe_agent`
- **Twitter handle:** [lin_bob57617](https://twitter.com/lin_bob57617)
- **Description:** Adds a tqdm progress bar to OllamaEmbeddings when
embedding a list.
- **Issue:** Related to #13637, but extended to Ollama.
- **Dependencies:** `tqdm` made a necessary dependency.
Thanks to @ugm2 for helping identify a common problem. Embeddings take a
very long time to finish on local machines, and require a progress bar
to help identify if one should even attempt the workload.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** Added a line to pass the tenant parameter to
add_data_object
- **Issue:** An extra line added from the fix for #9956
- **Dependencies:** n/a
- **Tag maintainer:** @baskaryan
Tested locally, works as expected with the line change.
---------
Co-authored-by: Simon Dai <simon6752@gmail.com>
Description: Some Elastic indexes do not return a 'metadata' field in
'_source'. However, prior to this PR, the code assumed there always is a
'metadata' field. This PR adds support for cases where the field is
missing by adding it manually.
Issue: #13869
**Description:**
This PR adds Databricks Vector Search as a new vector store in
LangChain.
- [x] Add `DatabricksVectorSearch` in `langchain/vectorstores/`
- [x] Unit tests
- [x] Add
[`databricks-vectorsearch`](https://pypi.org/project/databricks-vectorsearch/)
as a new optional dependency
We ran the following checks:
- `make format` passed ✅
- `make lint` failed but the failures were caused by other files
+ Files touched by this PR passed the linter ✅
- `make test` passed ✅
- `make coverage` failed but the failures were caused by other files.
Tests added by or related to this PR all passed
+ langchain/vectorstores/databricks_vector_search.py test coverage 94% ✅
- `make spell_check` passed ✅
The example notebook and updates to the [provider's documentation
page](https://github.com/langchain-ai/langchain/blob/master/docs/docs/integrations/providers/databricks.md)
will be added later in a separate PR.
**Dependencies:**
Optional dependency:
[`databricks-vectorsearch`](https://pypi.org/project/databricks-vectorsearch/)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This pull request addresses an issue found in the example code within
the docstring of `libs/core/langchain_core/runnables/passthrough.py`
The original code snippet caused a `NameError` due to the missing import
of `RunnableLambda`. The error was as follows:
```
12 return "completion"
13
---> 14 chain = RunnableLambda(fake_llm) | {
15 'original': RunnablePassthrough(), # Original LLM output
16 'parsed': lambda text: text[::-1] # Parsing logic
NameError: name 'RunnableLambda' is not defined
```
To resolve this, I have modified the example code to include the
necessary import statement for `RunnableLambda`. Additionally, I have
adjusted the indentation in the code snippet to ensure consistency and
readability.
The modified code now successfully defines and utilizes
`RunnableLambda`, ensuring that users referencing the docstring will
have a functional and clear example to follow.
There are no related GitHub issues for this particular change.
Modified Code:
```python
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
from langchain_core.runnables import RunnableLambda
runnable = RunnableParallel(
origin=RunnablePassthrough(),
modified=lambda x: x+1
)
runnable.invoke(1) # {'origin': 1, 'modified': 2}
def fake_llm(prompt: str) -> str: # Fake LLM for the example
return "completion"
chain = RunnableLambda(fake_llm) | {
'original': RunnablePassthrough(), # Original LLM output
'parsed': lambda text: text[::-1] # Parsing logic
}
chain.invoke('hello') # {'original': 'completion', 'parsed': 'noitelpmoc'}
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Added a retriever for the Outline API to ask
questions on knowledge base
- **Issue:** resolves#11814
- **Dependencies:** None
- **Tag maintainer:** @baskaryan
- **Description:** Simple change, I just added title metadata to
GoogleDriveLoader for optional File Loaders
- **Dependencies:** no dependencies
- **Tag maintainer:** @hwchase17
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR provides idiomatic implementations for the exact-match and the
semantic LLM caches using Astra DB as backend through the database's
HTTP JSON API. These caches require the `astrapy` library as dependency.
Comes with integration tests and example usage in the `llm_cache.ipynb`
in the docs.
@baskaryan this is the Astra DB counterpart for the Cassandra classes
you merged some time ago, tagging you for your familiarity with the
topic. Thank you!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR adds a chat message history component that uses Astra DB for
persistence through the JSON API.
The `astrapy` package is required for this class to work.
I have added tests and a small notebook, and updated the relevant
references in the other docs pages.
(@rlancemartin this is the counterpart of the Cassandra equivalent class
you so helpfully reviewed back at the end of June)
Thank you!
- **Description:** This commit fixed the problem that Redis vector store
will change the value of a metadata from 0 to empty when saving the
document, which should be an un-intended behavior.
- **Issue:** N/A
- **Dependencies:** N/A