- Until now, hybrid search was limited to modules requiring external
services, such as Weaviate/Pinecone Hybrid Search. However, I have
developed a hybrid retriever that can merge a list of retrievers using
the [Reciprocal Rank
Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf)
algorithm. This new approach, similar to Weaviate hybrid search, does
not require the initialization of any external service.
- Dependencies: No - Twitter handle: dayuanjian21687
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Stop sequences are useful if you are doing long-running completions and
need to early-out rather than running for the full max_length... not
only does this save inference cost on Replicate, it is also much faster
if you are going to truncate the output later anyway.
Other LLMs support stop sequences natively (e.g. OpenAI) but I didn't
see this for Replicate so adding this via their prediction cancel
method.
Housekeeping: I ran `make format` and `make lint`, no issues reported in
the files I touched.
I did update the replicate integration test and ran `poetry run pytest
tests/integration_tests/llms/test_replicate.py` successfully.
Finally, I am @tjaffri https://twitter.com/tjaffri for feature
announcement tweets... or if you could please tag @docugami
https://twitter.com/docugami we would really appreciate that :-)
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
@rlancemartin
The modification includes:
* etherscanLoader
* test_etherscan
* document ipynb
I have run the test, lint, format, and spell check. I do encounter a
linting error on ipynb, I am not sure how to address that.
```
docs/extras/modules/data_connection/document_loaders/integrations/Etherscan.ipynb:55: error: Name "null" is not defined [name-defined]
docs/extras/modules/data_connection/document_loaders/integrations/Etherscan.ipynb:76: error: Name "null" is not defined [name-defined]
Found 2 errors in 1 file (checked 1 source file)
```
- Description: The Etherscan loader uses etherscan api to load
transaction histories under specific accounts on Ethereum Mainnet.
- No dependency is introduced by this PR.
- Twitter handle: glazecl
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
ChatGLM LLM integration will by default accumulate conversation
history(with_history=True) to ChatGLM backend api, which is not expected
in most cases. This PR set with_history=False by default, user should
explicitly set llm.with_history=True to turn this feature on. Related
PR: #8048#7774
---------
Co-authored-by: mlot <limpo2000@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Simple change of the Class that ContentHandler
inherits from. To create an object of type SagemakerEndpointEmbeddings,
the property content_handler must be of type EmbeddingsContentHandler
not ContentHandlerBase anymore,
- **Twitter handle:** @Juanjo_Torres11
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description:
This PR adds embeddings for LocalAI (
https://github.com/go-skynet/LocalAI ), a self-hosted OpenAI drop-in
replacement. As LocalAI can re-use OpenAI clients it is mostly following
the lines of the OpenAI embeddings, however when embedding documents, it
just uses string instead of sending tokens as sending tokens is
best-effort depending on the model being used in LocalAI. Sending tokens
is also tricky as token id's can mismatch with the model - so it's safer
to just send strings in this case.
Partly related to: https://github.com/hwchase17/langchain/issues/5256
Dependencies: No new dependencies
Twitter: @mudler_it
---------
Signed-off-by: mudler <mudler@localai.io>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**PR Description:**
This pull request introduces several enhancements and new features to
the `CubeSemanticLoader`. The changes include the following:
1. Added imports for the `json` and `time` modules.
2. Added new constructor parameters: `load_dimension_values`,
`dimension_values_limit`, `dimension_values_max_retries`, and
`dimension_values_retry_delay`.
3. Updated the class documentation with descriptions for the new
constructor parameters.
4. Added a new private method `_get_dimension_values()` to retrieve
dimension values from Cube's REST API.
5. Modified the `load()` method to load dimension values for string
dimensions if `load_dimension_values` is set to `True`.
6. Updated the API endpoint in the `load()` method from the base URL to
the metadata endpoint.
7. Refactored the code to retrieve metadata from the response JSON.
8. Added the `column_member_type` field to the metadata dictionary to
indicate if a column is a measure or a dimension.
9. Added the `column_values` field to the metadata dictionary to store
the dimension values retrieved from Cube's API.
10. Modified the `page_content` construction to include the column title
and description instead of the table name, column name, data type,
title, and description.
These changes improve the functionality and flexibility of the
`CubeSemanticLoader` class by allowing the loading of dimension values
and providing more detailed metadata for each document.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Hopefully, this doesn't come across as nitpicky! That isn't the
intention. I only noticed it, because I enjoy reading the documentation
and when I hit a mental road bump it is usually due to a missing word or
something =)
@baskaryan
New HTML loader that asynchronously loader a list of urls.
New transformer using [HTML2Text](https://github.com/Alir3z4/html2text/)
for HTML to clean, easy-to-read plain ASCII text (valid Markdown).
In certain 0-shot scenarios, the existing stateful language model can
unintentionally send/accumulate the .history.
This commit adds the "with_history" option to chatglm, allowing users to
control the behavior of .history and prevent unintended accumulation.
Possible reviewers @hwchase17 @baskaryan @mlot
Refer to discussion over this thread:
https://twitter.com/wey_gu/status/1681996149543276545?s=20
I've extended the support of async API to local Qdrant mode. It is faked
but allows prototyping without spinning a container. The tests are
improved to test the in-memory case as well.
@baskaryan @rlancemartin @eyurtsev @agola11
Streaming support is useful if you are doing long-running completions or
need interactivity e.g. for chat... adding it to replicate, using a
similar pattern to other LLMs that support streaming.
Housekeeping: I ran `make format` and `make lint`, no issues reported in
the files I touched.
I did update the replicate integration test but ran into some issues,
specifically:
1. The original test was failing for me due to the model argument not
being specified... perhaps this test is not regularly run? I fixed it by
adding a call to the lightweight hello world model which should not be
burdensome for replicate infra.
2. I couldn't get the `make integration_tests` command to pass... a lot
of failures in other integration tests due to missing dependencies...
however I did make sure the particluar test file I updated does pass, by
running `poetry run pytest
tests/integration_tests/llms/test_replicate.py`
Finally, I am @tjaffri https://twitter.com/tjaffri for feature
announcement tweets... or if you could please tag @docugami
https://twitter.com/docugami we would really appreciate that :-)
Tagging model maintainers @hwchase17 @baskaryan
Thank for all the awesome work you folks are doing.
---------
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
## Description
This PR adds a graph class and an openCypher QA chain to work with the
Amazon Neptune database.
## Dependencies
`requests` which is included in the LangChain dependencies.
## Maintainers for Review
@krlawrence
@baskaryan
### Twitter handle
pjain7
Integrating Portkey, which adds production features like caching,
tracing, tagging, retries, etc. to langchain apps.
- Dependencies: None
- Twitter handle: https://twitter.com/portkeyai
- test_portkey.py added for tests
- example notebook added in new utilities folder in modules
Also fixed a bug with OpenAIEmbeddings where headers weren't passing.
cc @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
BedrockEmbeddings does not have endpoint_url so that switching to custom
endpoint is not possible. I have access to Bedrock custom endpoint and
cannot use BedrockEmbeddings
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Golden Query is a wrapper on top of the [Golden Query
API](https://docs.golden.com/reference/query-api) which enables
programmatic access to query results on entities across Golden's
Knowledge Base. For more information about Golden API, please see the
[Golden API Getting
Started](https://docs.golden.com/reference/getting-started) page.
**Issue:** None
**Dependencies:** requests(already present in project)
**Tag maintainer:** @hinthornw
Signed-off-by: Constantin Musca <constantin.musca@gmail.com>
## Background
With the addition on email and calendar tools, LangChain is continuing
to complete its functionality to automate business processes.
## Challenge
One of the pieces of business functionality that LangChain currently
doesn't have is the ability to search for flights and travel in order to
book business travel.
## Changes
This PR implements an integration with the
[Amadeus](https://developers.amadeus.com/) travel search API for
LangChain, enabling seamless search for flights with a single
authentication process.
## Who can review?
@hinthornw
## Appendix
@tsolakoua and @minjikarin, I utilized your
[amadeus-python](https://github.com/amadeus4dev/amadeus-python) library
extensively. Given the rising popularity of LangChain and similar AI
frameworks, the convergence of libraries like amadeus-python and tools
like this one is likely. So, I wanted to keep you updated on our
progress.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Added a doc about the [Datadog APM integration for
LangChain](https://github.com/DataDog/dd-trace-py/pull/6137).
Note that the integration is on `ddtrace`'s end and so no code is
introduced/required by this integration into the langchain library. For
that reason I've refrained from adding an example notebook (although
I've added setup instructions for enabling the integration in the doc)
as no code is technically required to enable the integration.
Tagging @baskaryan as reviewer on this PR, thank you very much!
## Dependencies
Datadog APM users will need to have `ddtrace` installed, but the
integration is on `ddtrace` end and so does not introduce any external
dependencies to the LangChain project.
Co-authored-by: Bagatur <baskaryan@gmail.com>