<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
-->
# Added SmartGPT workflow by providing SmartLLM wrapper around LLMs
Edit:
As @hwchase17 suggested, this should be a chain, not an LLM. I have
adapted the PR.
It is used like this:
```
from langchain.prompts import PromptTemplate
from langchain.chains import SmartLLMChain
from langchain.chat_models import ChatOpenAI
hard_question = "I have a 12 liter jug and a 6 liter jug. I want to measure 6 liters. How do I do it?"
hard_question_prompt = PromptTemplate.from_template(hard_question)
llm = ChatOpenAI(model_name="gpt-4")
prompt = PromptTemplate.from_template(hard_question)
chain = SmartLLMChain(llm=llm, prompt=prompt, verbose=True)
chain.run({})
```
Original text:
Added SmartLLM wrapper around LLMs to allow for SmartGPT workflow (as in
https://youtu.be/wVzuvf9D9BU). SmartLLM can be used wherever LLM can be
used. E.g:
```
smart_llm = SmartLLM(llm=OpenAI())
smart_llm("What would be a good company name for a company that makes colorful socks?")
```
or
```
smart_llm = SmartLLM(llm=OpenAI())
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=smart_llm, prompt=prompt)
chain.run("colorful socks")
```
SmartGPT consists of 3 steps:
1. Ideate - generate n possible solutions ("ideas") to user prompt
2. Critique - find flaws in every idea & select best one
3. Resolve - improve upon best idea & return it
Fixes#4463
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @hwchase17
- @agola11
Twitter: [@UmerHAdil](https://twitter.com/@UmerHAdil) | Discord:
RicChilligerDude#7589
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: updated BabyAGI examples and experimental to append the
iteration to the result id to fix error storing data to vectorstore.
Issue: 7445
Dependencies: no
Tag maintainer: @eyurtsev
This fix worked for me locally. Happy to take some feedback and iterate
on a better solution. I was considering appending a uuid instead but
didn't want to over complicate the example.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Since the refactoring into sub-projects `libs/langchain` and
`libs/experimental`, the `make` targets `format_diff` and `lint_diff` do
not work anymore when running `make` from these subdirectories. Reason
is that
```
PYTHON_FILES=$(shell git diff --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$')
```
generates paths from the project's root directory instead of the
corresponding subdirectories. This PR fixes this by adding a
`--relative` command line option.
- Tag maintainer: @baskaryan
# [WIP] Tree of Thought introducing a new ToTChain.
This PR adds a new chain called ToTChain that implements the ["Large
Language Model Guided
Tree-of-Though"](https://arxiv.org/pdf/2305.08291.pdf) paper.
There's a notebook example `docs/modules/chains/examples/tot.ipynb` that
shows how to use it.
Implements #4975
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @hwchase17
- @vowelparrot
---------
Co-authored-by: Vadim Gubergrits <vgubergrits@outbox.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Objects implementing Runnable: BasePromptTemplate, LLM, ChatModel,
Chain, Retriever, OutputParser
- [x] Implement Runnable in base Retriever
- [x] Raise TypeError in operator methods for unsupported things
- [x] Implement dict which calls values in parallel and outputs dict
with results
- [x] Merge in `+` for prompts
- [x] Confirm precedence order for operators, ideal would be `+` `|`,
https://docs.python.org/3/reference/expressions.html#operator-precedence
- [x] Add support for openai functions, ie. Chat Models must return
messages
- [x] Implement BaseMessageChunk return type for BaseChatModel, a
subclass of BaseMessage which implements __add__ to return
BaseMessageChunk, concatenating all str args
- [x] Update implementation of stream/astream for llm and chat models to
use new `_stream`, `_astream` optional methods, with default
implementation in base class `raise NotImplementedError` use
https://stackoverflow.com/a/59762827 to see if it is implemented in base
class
- [x] Delete the IteratorCallbackHandler (leave the async one because
people using)
- [x] Make BaseLLMOutputParser implement Runnable, accepting either str
or BaseMessage
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>