Commit Graph

4 Commits

Author SHA1 Message Date
Harrison Chase
c0c2fd0782
Harrison/zep mem (#6388)
Co-authored-by: Daniel Chalef <131175+danielchalef@users.noreply.github.com>
2023-06-18 16:53:35 -07:00
Harrison Chase
9bf5b0defa
Harrison/myscale self query (#6376)
Co-authored-by: Fangrui Liu <fangruil@moqi.ai>
Co-authored-by: 刘 方瑞 <fangrui.liu@outlook.com>
Co-authored-by: Fangrui.Liu <fangrui.liu@ubc.ca>
2023-06-18 16:53:10 -07:00
Saba Sturua
427551eabf
DocArray as a Retriever (#6031)
## DocArray as a Retriever

[DocArray](https://github.com/docarray/docarray) is an open-source tool
for managing your multi-modal data. It offers flexibility to store and
search through your data using various document index backends. This PR
introduces `DocArrayRetriever` - which works with any available backend
and serves as a retriever for Langchain apps.

Also, I added 2 notebooks:
DocArray Backends - intro to all 5 currently supported backends, how to
initialize, index, and use them as a retriever
DocArray Usage - showcasing what additional search parameters you can
pass to create versatile retrievers

Example:
```python
from docarray.index import InMemoryExactNNIndex
from docarray import BaseDoc, DocList
from docarray.typing import NdArray
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.retrievers import DocArrayRetriever


# define document schema
class MyDoc(BaseDoc):
    description: str
    description_embedding: NdArray[1536]


embeddings = OpenAIEmbeddings()
# create documents
descriptions = ["description 1", "description 2"]
desc_embeddings = embeddings.embed_documents(texts=descriptions)
docs = DocList[MyDoc](
    [
        MyDoc(description=desc, description_embedding=embedding)
        for desc, embedding in zip(descriptions, desc_embeddings)
    ]
)

# initialize document index with data
db = InMemoryExactNNIndex[MyDoc](docs)

# create a retriever
retriever = DocArrayRetriever(
    index=db,
    embeddings=embeddings,
    search_field="description_embedding",
    content_field="description",
)

# find the relevant document
doc = retriever.get_relevant_documents("action movies")
print(doc)
```

#### Who can review?

@dev2049

---------

Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 09:09:33 -07:00
Davis Chase
87e502c6bc
Doc refactor (#6300)
Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-06-16 11:52:56 -07:00