Add support for calling HuggingFace embedding models
using the HuggingFaceHub Inference API. New class mirrors
the existing HuggingFaceHub LLM implementation. Currently
only supports 'sentence-transformers' models.
Closes#86
this will break atm but wanted to get thoughts on implementation.
1. should add() be on docstore interface?
2. should InMemoryDocstore change to take a list of documents as init?
(makes this slightly easier to implement in FAISS -- if we think it is
less clean then could expose a method to get the number of documents
currently in the dict, and perform the logic of creating the necessary
dictionary in the FAISS.add_texts method.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This fixes Issue #104
The tests for HF Embeddings is skipped because of the segfault issue
mentioned there. Perhaps, a new issue should be created for that?
lots of kwargs! generation docs here:
https://docs.nlpcloud.com/#generation
This somewhat breaks the paradigm introduced in LLM base class as the
stop sequence isn't a list, and should rightfully be introduced at the
time of initialization of the class, along with the other kwargs that
depend on its presence (e.g. remove_end_sequence, etc.) curious if you'd
want to refactor LLM base class to take out stop as a specific named
kwarg?
Add support for huggingface hub
I could not find a good way to enforce stop tokens over the huggingface
hub api - that needs to hopefully be cleaned up in the future