Commit Graph

4679 Commits

Author SHA1 Message Date
Taqi Jaffri
b7290f01d8
Batching for hf_pipeline (#10795)
The huggingface pipeline in langchain (used for locally hosted models)
does not support batching. If you send in a batch of prompts, it just
processes them serially using the base implementation of _generate:
https://github.com/docugami/langchain/blob/master/libs/langchain/langchain/llms/base.py#L1004C2-L1004C29

This PR adds support for batching in this pipeline, so that GPUs can be
fully saturated. I updated the accompanying notebook to show GPU batch
inference.

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2023-09-25 18:23:11 +01:00
Bagatur
aa6e6db8c7
bump 301 (#11018) 2023-09-25 08:50:47 -07:00
Nuno Campos
956ee981c0
Fix issue where requests wrapper passes auth kwarg twice (#11010)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

Closes #8842
2023-09-25 15:45:04 +01:00
Scotty
88a02076af
fix ChatMessageChunk concat error (#10174)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->

- Description: fix `ChatMessageChunk` concat error 
- Issue: #10173 
- Dependencies: None
- Tag maintainer: @baskaryan, @eyurtsev, @rlancemartin
- Twitter handle: None

---------

Co-authored-by: wangshuai.scotty <wangshuai.scotty@bytedance.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-09-25 11:17:11 +01:00
Massimiliano Pronesti
4322b246aa
docs: add vLLM chat notebook (#10993)
This PR aims at showcasing how to use vLLM's OpenAI-compatible chat API.

### Context
Lanchain already supports vLLM and its OpenAI-compatible `Completion`
API. However, the `ChatCompletion` API was not aligned with OpenAI and
for this reason I've waited for this
[PR](https://github.com/vllm-project/vllm/pull/852) to be merged before
adding this notebook to langchain.
2023-09-24 18:23:19 -07:00
Naveen Tatikonda
b0f21e2b50
[OpenSearch] Pass ids using from_texts and indexname in add_texts and search (#10969)
### Description
This PR makes the following changes to OpenSearch:
1. Pass optional ids with `from_texts`
2. Pass an optional index name with `add_texts` and `search` instead of
using the same index name that was used during `from_texts`

### Issue
https://github.com/langchain-ai/langchain/issues/10967

### Maintainers
@rlancemartin, @eyurtsev, @navneet1v

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-09-23 16:12:51 -07:00
deanchanter
f945426874
Resolve GHI 10674 (#10977) 2023-09-23 16:11:52 -07:00
Anar
ff732e10f8
LLMRails Embedding (#10959)
LLMRails  Embedding Integration
This PR provides integration with LLMRails. Implemented here are:

langchain/embeddings/llm_rails.py
docs/extras/integrations/text_embedding/llm_rails.ipynb


Hi @hwchase17 after adding our vectorstore integration to langchain with
confirmation of you and @baskaryan, now we want to add our embedding
integration

---------

Co-authored-by: Anar Aliyev <aaliyev@mgmt.cloudnet.services>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-23 16:11:02 -07:00
Michael Feil
94e31647bd
Support for Gradient.ai embedding (#10968)
Adds support for gradient.ai's embedding model.

This will remain a Draft, as the code will likely be refactored with the
`pip install gradientai` python sdk.
2023-09-23 16:10:23 -07:00
Bagatur
5fd13c22ad
redirect mrkl (#10979) 2023-09-23 16:09:13 -07:00
C.J. Jameson
05d5fcfdf8
fix make-coverage local invocation #10941 (#10974)
Fix the invocation of `make coverage` in `libs/langchain`

Fixes #10941
2023-09-23 16:03:53 -07:00
Bagatur
040d436b3f
Add vertex scheduled test (#10958) 2023-09-23 15:51:59 -07:00
Piyush Jain
8602a32b7e
Fixes error with providers that don't have model_id (#10966)
## Description
Fixes error with using the chain for providers that don't have
`model_id` field.


![image](https://github.com/langchain-ai/langchain/assets/289369/a86074cf-6c99-4390-a135-b3af7a4f0827)
2023-09-23 15:34:28 -07:00
Nuno Campos
7b13292e35
Remove python eval from vector sql db chain (#10937)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-09-23 08:51:03 -07:00
Richard Wang
b809c243af
Fix bug in index api (#10614)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

- **Description:** a fix for `index`.
- **Issue:** Not applicable.
- **Dependencies:** None
- **Tag maintainer:** 
- **Twitter handle:** richarddwang

# Problem
Replication code
```python
from pprint import pprint
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import SQLRecordManager, index
from langchain.schema import Document
from langchain.vectorstores import Qdrant
from langchain_setup.qdrant import pprint_qdrant_documents, create_inmemory_empty_qdrant

# Documents
metadata1 = {"source": "fullhell.alchemist"}
doc1_1 = Document(page_content="1-1 I have a dog~", metadata=metadata1)
doc1_2 = Document(page_content="1-2 I have a daugter~", metadata=metadata1)
doc1_3 = Document(page_content="1-3 Ahh! O..Oniichan", metadata=metadata1)
doc2 = Document(page_content="2 Lancer died again.", metadata={"source": "fate.docx"})

# Create empty vectorstore
collection_name = "secret_of_D_disk"
vectorstore: Qdrant = create_inmemory_empty_qdrant()

# Create record Manager
import tempfile
from pathlib import Path

record_manager = SQLRecordManager(
    namespace="qdrant/{collection_name}",
    db_url=f"sqlite:///{Path(tempfile.gettempdir())/collection_name}.sql",
)
record_manager.create_schema()  # 必須

sync_result = index(
    [doc1_1, doc1_2, doc1_2, doc2],
    record_manager,
    vectorstore,
    cleanup="full",
    source_id_key="source",
)
print(sync_result, end="\n\n")
pprint_qdrant_documents(vectorstore)
```
<details>
<summary>Code of helper functions `pprint_qdrant_documents` and
`create_inmemory_empty_qdrant`</summary>

```python
def create_inmemory_empty_qdrant(**from_texts_kwargs):
    # Qdrant requires vector size, which can be only know after applying embedder
    vectorstore = Qdrant.from_texts(["dummy"], location=":memory:", embedding=OpenAIEmbeddings(), **from_texts_kwargs)
    dummy_document_id = vectorstore.client.scroll(vectorstore.collection_name)[0][0].id
    vectorstore.delete([dummy_document_id])
    return vectorstore

def pprint_qdrant_documents(vectorstore, limit: int = 100, **scroll_kwargs):
    document_ids, documents = [], []
    for record in vectorstore.client.scroll(
        vectorstore.collection_name, limit=100, **scroll_kwargs
    )[0]:
        document_ids.append(record.id)
        documents.append(
            Document(
                page_content=record.payload["page_content"],
                metadata=record.payload["metadata"] or {},
            )
        )
    pprint_documents(documents, document_ids=document_ids)

def pprint_document(document: Document = None, document_id=None, return_string=False):
    displayed_text = ""
    if document_id:
        displayed_text += f"Document {document_id}:\n\n"
    displayed_text += f"{document.page_content}\n\n"
    metadata_text = pformat(document.metadata, indent=1)
    if "\n" in metadata_text:
        displayed_text += f"Metadata:\n{metadata_text}"
    else:
        displayed_text += f"Metadata:{metadata_text}"

    if return_string:
        return displayed_text
    else:
        print(displayed_text)


def pprint_documents(documents, document_ids=None):
    if not document_ids:
        document_ids = [i + 1 for i in range(len(documents))]

    displayed_texts = []
    for document_id, document in zip(document_ids, documents):
        displayed_text = pprint_document(
            document_id=document_id, document=document, return_string=True
        )
        displayed_texts.append(displayed_text)
    print(f"\n{'-' * 100}\n".join(displayed_texts))
```
</details>
You will get

```
{'num_added': 3, 'num_updated': 0, 'num_skipped': 0, 'num_deleted': 0}

Document 1b19816e-b802-53c0-ad60-5ff9d9b9b911:

1-2 I have a daugter~

Metadata:{'source': 'fullhell.alchemist'}
----------------------------------------------------------------------------------------------------
Document 3362f9bc-991a-5dd5-b465-c564786ce19c:

1-1 I have a dog~

Metadata:{'source': 'fullhell.alchemist'}
----------------------------------------------------------------------------------------------------
Document a4d50169-2fda-5339-a196-249b5f54a0de:

1-2 I have a daugter~

Metadata:{'source': 'fullhell.alchemist'}
```
This is not correct. We should be able to expect that the vectorsotre
now includes doc1_1, doc1_2, and doc2, but not doc1_1, doc1_2, and
doc1_2.


# Reason
In `index`, the original code is 
```python
uids = []
docs_to_index = []
for doc, hashed_doc, doc_exists in zip(doc_batch, hashed_docs, exists_batch):
    if doc_exists:
        # Must be updated to refresh timestamp.
        record_manager.update([hashed_doc.uid], time_at_least=index_start_dt)
        num_skipped += 1
        continue
    uids.append(hashed_doc.uid)
    docs_to_index.append(doc)
```
In the aforementioned example, `len(doc_batch) == 4`, but
`len(hashed_docs) == len(exists_batch) == 3`. This is because the
deduplication of input documents [doc1_1, doc1_2, doc1_2, doc2] is
[doc1_1, doc1_2, doc2]. So `index` insert doc1_1, doc1_2, doc1_2 with
the uid of doc1_1, doc1_2, doc2.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-09-22 22:41:07 -04:00
Joshua Sundance Bailey
d67b120a41
Make anthropic_api_key a secret str (#10724)
This PR makes `ChatAnthropic.anthropic_api_key` a `pydantic.SecretStr`
to avoid inadvertently exposing API keys when the `ChatAnthropic` object
is represented as a str.
2023-09-22 22:06:20 -04:00
Bagatur
1b65779905
fix integration tests (#10952) 2023-09-22 12:04:38 -07:00
Bagatur
6f781902ae
vercel fix (#10951) 2023-09-22 11:31:52 -07:00
Bagatur
f0408c347f
llm feat table revision (#10947) 2023-09-22 10:29:12 -07:00
Harrison Chase
9062e36722
Harrison/agents structured (#10911) 2023-09-22 10:21:23 -07:00
C.J. Jameson
b4d2663beb
CONTRIBUTING.md Quick Start: focus on langchain core; clarify docs and experimental are separate (#10906)
follow up to https://github.com/langchain-ai/langchain/pull/7959 ,
explaining better to focus just on langchain core

no dependencies

twitter @cjcjameson
2023-09-22 10:17:08 -07:00
Michael Landis
f30b4697d4
fix: broken link in libs/langchain README (#10920)
**Description**
Fixes broken link to `CONTRIBUTING.md` in `libs/langchain/README.md`.

Because`libs/langchain/README.md` was copied from the top level README,
and because the README contains a link to `.github/CONTRIBUTING.md`, the
copied README's link relative path must be updated. This commit fixes
that link.
2023-09-22 10:14:19 -07:00
Bagatur
3cb460d5d8
bump 300 (#10940) 2023-09-22 09:44:47 -07:00
Bagatur
281a332784
table fix (#10944) 2023-09-22 09:37:03 -07:00
Bagatur
5336d87c15
update feat table (#10939) 2023-09-22 09:16:40 -07:00
Nuno Campos
3d5e92e3ef
Accept run name arg for non-chain runs (#10935) 2023-09-22 08:41:25 -07:00
Nuno Campos
aac2d4dcef
In MergerRetriever async call all retrievers in parallel (#10938) 2023-09-22 08:40:16 -07:00
German Martin
66d5a7e7cf
Add async support to multi-query retriever. (#10873)
Added async support to the MultiQueryRetriever class.

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-09-22 08:33:20 -07:00
Greg Richardson
4eee789dd3
Docs: Using SupabaseVectorStore with existing documents (#10907)
## Description
Adds additional docs on how to use `SupabaseVectorStore` with existing
data in your DB (vs inserting new documents each time).
2023-09-22 08:18:56 -07:00
Leonid Kuligin
9d4b710a48
small fixes to Vertex (#10934)
Fixed tests, updated the required version of the SDK and a few minor
changes after the recent improvement
(https://github.com/langchain-ai/langchain/pull/10910)
2023-09-22 08:18:09 -07:00
wo0d
4e58b78102
Fix chat_history message order (#10869)
Not all databases uses id as default order, so add it explicitly

sqlite uses rawid as default order in select statement:
[https://www.sqlite.org/lang_createtable.html#rowid](https://www.sqlite.org/lang_createtable.html#rowid),
but some other databases like postgresql not behaves like this. since
this class supports multiple db engine. we should have an order.
2023-09-22 11:15:59 -04:00
Roman Shaptala
3d40de75c5
Fix default refine prompt template bug (#10928)
**Description:**
  
Default refine template does not actually use the refine template
defined above, it uses a string with the variable name.
 @baskaryan, @eyurtsev, @hwchase17
2023-09-22 11:04:28 -04:00
Bagatur
cab55e9bc1
add vertex prod features (#10910)
- chat vertex async
- vertex stream
- vertex full generation info
- vertex use server-side stopping
- model garden async
- update docs for all the above

in follow up will add
[] chat vertex full generation info
[] chat vertex retries
[] scheduled tests
2023-09-22 01:44:09 -07:00
Bagatur
dccc20b402
add model feat table (#10921) 2023-09-22 01:10:27 -07:00
William FH
ee8653f62c
Wfh/allow nonparallel (#10914) 2023-09-21 20:21:01 -07:00
Harrison Chase
bb3e6cb427
lcel benefits (#10898) 2023-09-21 14:30:53 -07:00
Leonid Kuligin
95e1d1fae6
fix in the docstring (#10902)
Description: A fix in the documentation on how to use
`GoogleSearchAPIWrapper`.
2023-09-21 14:30:32 -07:00
Bagatur
af41bc84e6
bump 299 (#10904) 2023-09-21 12:56:52 -07:00
Bagatur
9a858a9107
Bagatur/arxiv kwargs (#10903)
support all arXiv api wrapper kwargs in loader
2023-09-21 12:49:56 -07:00
Maksym Diabin
697efd9757
JSONLoader Documentation Fix (#10505)
- Description: 
Updated JSONLoader usage documentation which was making it unusable
- Issue: JSONLoader if used with the documented arguments was failing on
various JSON documents.
- Dependencies: 
no dependencies
- Twitter handle: @TheSlnArchitect
2023-09-21 11:37:40 -07:00
niklas
e5f420d2bc
Fix typo in URL document loader example (#10585)
- **Description:** Fix typo in URL document loader example
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Tag maintainer:** not urgent
2023-09-21 11:35:27 -07:00
Nuno Campos
ea26c12b23
Fix Runnable.transform() for false-y inputs (#10893)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-21 11:27:09 -07:00
Nuno Campos
fcb5aba9f0
Add Runnable.astream_log() (#10374)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-21 10:19:55 -07:00
Harrison Chase
a1ade48e8f
update agent docs (#10894) 2023-09-21 09:09:33 -07:00
Stefano Lottini
40e836c67e
added Cassandra caches to the llm_caching notebook doc (#10889)
This adds a section on usage of `CassandraCache` and
`CassandraSemanticCache` to the doc notebook about caching LLMs, as
suggested in [this
comment](https://github.com/langchain-ai/langchain/pull/9772/#issuecomment-1710544100)
on a previous merged PR.

I also spotted what looks like a mismatch between different executions
and propose a fix (line 98).

Being the result of several runs, the cell execution numbers are
scrambled somewhat, so I volunteer to refine this PR by (manually)
re-numbering the cells to restore the appearance of a single, smooth
running (for the sake of orderly execution :)
2023-09-21 08:52:52 -07:00
Bagatur
d37ce48e60
sep base url and loaded url in sub link extraction (#10895) 2023-09-21 08:47:41 -07:00
Bagatur
24cb5cd379
bump 298 (#10892) 2023-09-21 08:26:11 -07:00
Bagatur
c1f9cc0bc5
recursive loader add status check (#10891) 2023-09-21 08:25:43 -07:00
Matvey Arye
6e02c45ca4
Add integration for Timescale Vector(Postgres) (#10650)
**Description:**
This commit adds a vector store for the Postgres-based vector database
(`TimescaleVector`).

Timescale Vector(https://www.timescale.com/ai) is PostgreSQL++ for AI
applications. It enables you to efficiently store and query billions of
vector embeddings in `PostgreSQL`:
- Enhances `pgvector` with faster and more accurate similarity search on
1B+ vectors via DiskANN inspired indexing algorithm.
- Enables fast time-based vector search via automatic time-based
partitioning and indexing.
- Provides a familiar SQL interface for querying vector embeddings and
relational data.

Timescale Vector scales with you from POC to production:
- Simplifies operations by enabling you to store relational metadata,
vector embeddings, and time-series data in a single database.
- Benefits from rock-solid PostgreSQL foundation with enterprise-grade
feature liked streaming backups and replication, high-availability and
row-level security.
- Enables a worry-free experience with enterprise-grade security and
compliance.

Timescale Vector is available on Timescale, the cloud PostgreSQL
platform. (There is no self-hosted version at this time.) LangChain
users get a 90-day free trial for Timescale Vector.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Avthar Sewrathan <avthar@timescale.com>
2023-09-21 07:33:37 -07:00
Michael Feil
55570e54e1
gradient.ai LLM intregration (#10800)
- **Description:** This PR implements a new LLM API to
https://gradient.ai
- **Issue:** Feature request for LLM #10745 
- **Dependencies**: No additional dependencies are introduced. 
- **Tag maintainer:** I am opening this PR for visibility, once ready
for review I'll tag.

- ```make format && make lint && make test``` is running.
- added a `integration` and `mock unit` test.


Co-authored-by: michaelfeil <me@michaelfeil.eu>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-21 07:29:16 -07:00