- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for [DeepInfra]
- [x] **PR message**:
- **Description:** Invoke callback prior to yielding token in stream
method in [DeepInfra]
- **Issue:** https://github.com/langchain-ai/langchain/issues/16913
- **Dependencies:** None
- **Twitter handle:** @bolun_zhang
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Description: This update refines the documentation for
`RunnablePassthrough` by removing an unnecessary import and correcting a
minor syntactical error in the example provided. This change enhances
the clarity and correctness of the documentation, ensuring that users
have a more accurate guide to follow.
Issue: N/A
Dependencies: None
This PR focuses solely on documentation improvements, specifically
targeting the `RunnablePassthrough` class within the `langchain_core`
module. By clarifying the example provided in the docstring, users are
offered a more straightforward and error-free guide to utilizing the
`RunnablePassthrough` class effectively.
As this is a documentation update, it does not include changes that
require new integrations, tests, or modifications to dependencies. It
adheres to the guidelines of minimal package interference and backward
compatibility, ensuring that the overall integrity and functionality of
the LangChain package remain unaffected.
Thank you for considering this documentation refinement for inclusion in
the LangChain project.
Fix of YandexGPT embeddings.
The current version uses a single `model_name` for queries and
documents, essentially making the `embed_documents` and `embed_query`
methods the same. Yandex has a different endpoint (`model_uri`) for
encoding documents, see
[this](https://yandex.cloud/en/docs/yandexgpt/concepts/embeddings). The
bug may impact retrievers built with `YandexGPTEmbeddings` (for instance
FAISS database as retriever) since they use both `embed_documents` and
`embed_query`.
A simple snippet to test the behaviour:
```python
from langchain_community.embeddings.yandex import YandexGPTEmbeddings
embeddings = YandexGPTEmbeddings()
q_emb = embeddings.embed_query('hello world')
doc_emb = embeddings.embed_documents(['hello world', 'hello world'])
q_emb == doc_emb[0]
```
The response is `True` with the current version and `False` with the
changes I made.
Twitter: @egor_krash
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
`_ListSQLDatabaseToolInput` raise error if model returns `{}`.
For example, gpt-4-turbo returns `{}` with SQL Agent initialized by
`create_sql_agent`.
So, I set default value `""` for `_ListSQLDatabaseToolInput` tool_input.
This is actually a gpt-4-turbo issue, not a LangChain issue, but I
thought it would be helpful to set a default value `""`.
This problem is discussed in detail in the following Issue.
**Issue:** https://github.com/langchain-ai/langchain/issues/20405
**Dependencies:** none
Sorry, I did not add or change the test code, as tests for this
components was not exist .
However, I have tested the following code based on the [SQL Agent
Document](https://python.langchain.com/docs/use_cases/sql/agents/), to
make sure it works.
```
from langchain_community.agent_toolkits.sql.base import create_sql_agent
from langchain_community.utilities.sql_database import SQLDatabase
from langchain_openai import ChatOpenAI
db = SQLDatabase.from_uri("sqlite:///Chinook.db")
llm = ChatOpenAI(model="gpt-4-turbo", temperature=0)
agent_executor = create_sql_agent(llm, db=db, agent_type="openai-tools", verbose=True)
result = agent_executor.invoke("List the total sales per country. Which country's customers spent the most?")
print(result["output"])
```
- **Description:** Complete the support for Lua code in
langchain.text_splitter module.
- **Dependencies:** No
- **Twitter handle:** @saberuster
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
```python
from langchain.agents import AgentExecutor, create_tool_calling_agent, tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_groq import ChatGroq
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant"),
("human", "{input}"),
MessagesPlaceholder("agent_scratchpad"),
]
)
model = ChatGroq(model_name="mixtral-8x7b-32768", temperature=0)
@tool
def magic_function(input: int) -> int:
"""Applies a magic function to an input."""
return input + 2
tools = [magic_function]
agent = create_tool_calling_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke({"input": "what is the value of magic_function(3)?"})
```
```
> Entering new AgentExecutor chain...
Invoking: `magic_function` with `{'input': 3}`
5The value of magic\_function(3) is 5.
> Finished chain.
{'input': 'what is the value of magic_function(3)?',
'output': 'The value of magic\\_function(3) is 5.'}
```
**Description:** Masking of the API key for AI21 models
**Issue:** Fixes#12165 for AI21
**Dependencies:** None
Note: This fix came in originally through #12418 but was possibly missed
in the refactor to the AI21 partner package
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Replaced all `from langchain.callbacks` into `from
langchain_core.callbacks` .
Changes in the `langchain` and `langchain_experimental`
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for Llamafile
- [x] **PR message**:
- **Description:** Invoke callback prior to yielding token in stream
method in community llamafile.py
- **Issue:** https://github.com/langchain-ai/langchain/issues/16913
- **Dependencies:** None
- **Twitter handle:** @bolun_zhang
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
- [x] **PR title**: community[patch]: Invoke callback prior to yielding
token fix for HuggingFaceEndpoint
- [x] **PR message**:
- **Description:** Invoke callback prior to yielding token in stream
method in community HuggingFaceEndpoint
- **Issue:** https://github.com/langchain-ai/langchain/issues/16913
- **Dependencies:** None
- **Twitter handle:** @bolun_zhang
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Added the [FireCrawl](https://firecrawl.dev) document loader. Firecrawl
crawls and convert any website into LLM-ready data. It crawls all
accessible subpages and give you clean markdown for each.
- **Description:** Adds FireCrawl data loader
- **Dependencies:** firecrawl-py
- **Twitter handle:** @mendableai
ccing contributors: (@ericciarla @nickscamara)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
LLMs might sometimes return invalid response for LLM graph transformer.
Instead of failing due to pydantic validation, we skip it and manually
check and optionally fix error where we can, so that more information
gets extracted
Mistral gives us one ID per response, no individual IDs for tool calls.
```python
from langchain.agents import AgentExecutor, create_tool_calling_agent, tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_mistralai import ChatMistralAI
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant"),
("human", "{input}"),
MessagesPlaceholder("agent_scratchpad"),
]
)
model = ChatMistralAI(model="mistral-large-latest", temperature=0)
@tool
def magic_function(input: int) -> int:
"""Applies a magic function to an input."""
return input + 2
tools = [magic_function]
agent = create_tool_calling_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke({"input": "what is the value of magic_function(3)?"})
```
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:** Adds chroma to the partners package. Tests & code
mirror those in the community package.
**Dependencies:** None
**Twitter handle:** @akiradev0x
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code.
See #20050 as a template for this PR.
- As a byproduct: Added 3 missed `test_imports`.
- Added missed `SolarChat` in to __init___.py Added it into test_import
ut.
- Added `# type: ignore` to fix linting. It is not clear, why linting
errors appear after ^ changes.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
```python
from langchain.agents import AgentExecutor, create_tool_calling_agent, tool
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant"),
MessagesPlaceholder("chat_history", optional=True),
("human", "{input}"),
MessagesPlaceholder("agent_scratchpad"),
]
)
model = ChatAnthropic(model="claude-3-opus-20240229")
@tool
def magic_function(input: int) -> int:
"""Applies a magic function to an input."""
return input + 2
tools = [magic_function]
agent = create_tool_calling_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.invoke({"input": "what is the value of magic_function(3)?"})
```
```
> Entering new AgentExecutor chain...
Invoking: `magic_function` with `{'input': 3}`
responded: [{'text': '<thinking>\nThe user has asked for the value of magic_function applied to the input 3. Looking at the available tools, magic_function is the relevant one to use here, as it takes an integer input and returns an integer output.\n\nThe magic_function has one required parameter:\n- input (integer)\n\nThe user has directly provided the value 3 for the input parameter. Since the required parameter is present, we can proceed with calling the function.\n</thinking>', 'type': 'text'}, {'id': 'toolu_01HsTheJPA5mcipuFDBbJ1CW', 'input': {'input': 3}, 'name': 'magic_function', 'type': 'tool_use'}]
5
Therefore, the value of magic_function(3) is 5.
> Finished chain.
{'input': 'what is the value of magic_function(3)?',
'output': 'Therefore, the value of magic_function(3) is 5.'}
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>