# Support Qdrant filters
Qdrant has an [extensive filtering
system](https://qdrant.tech/documentation/concepts/filtering/) with rich
type support. This PR makes it possible to use the filters in Langchain
by passing an additional param to both the
`similarity_search_with_score` and `similarity_search` methods.
## Who can review?
@dev2049 @hwchase17
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# SQLite-backed Entity Memory
Following the initiative of
https://github.com/hwchase17/langchain/pull/2397 I think it would be
helpful to be able to persist Entity Memory on disk by default
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This PR adds a new method `from_es_connection` to the
`ElasticsearchEmbeddings` class allowing users to use Elasticsearch
clusters outside of Elastic Cloud.
Users can create an Elasticsearch Client object and pass that to the new
function.
The returned object is identical to the one returned by calling
`from_credentials`
```
# Create Elasticsearch connection
es_connection = Elasticsearch(
hosts=['https://es_cluster_url:port'],
basic_auth=('user', 'password')
)
# Instantiate ElasticsearchEmbeddings using es_connection
embeddings = ElasticsearchEmbeddings.from_es_connection(
model_id,
es_connection,
)
```
I also added examples to the elasticsearch jupyter notebook
Fixes # https://github.com/hwchase17/langchain/issues/5239
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Added support for modifying the number of threads in the GPT4All model
I have added the capability to modify the number of threads used by the
GPT4All model. This allows users to adjust the model's parallel
processing capabilities based on their specific requirements.
## Changes Made
- Updated the `validate_environment` method to set the number of threads
for the GPT4All model using the `values["n_threads"]` parameter from the
`GPT4All` class constructor.
## Context
Useful in scenarios where users want to optimize the model's performance
by leveraging multi-threading capabilities.
Please note that the `n_threads` parameter was included in the `GPT4All`
class constructor but was previously unused. This change ensures that
the specified number of threads is utilized by the model .
## Dependencies
There are no new dependencies introduced by this change. It only
utilizes existing functionality provided by the GPT4All package.
## Testing
Since this is a minor change testing is not required.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
when the LLMs output 'yes|no',BooleanOutputParser can parse it to
'True|False', fix the ValueError in parse().
<!--
when use the BooleanOutputParser in the chain_filter.py, the LLMs output
'yes|no',the function 'parse' will throw ValueError。
-->
Fixes # (issue)
#5396https://github.com/hwchase17/langchain/issues/5396
---------
Co-authored-by: gaofeng27692 <gaofeng27692@hundsun.com>
# Adds ability to specify credentials when using Google BigQuery as a
data loader
Fixes#5465 . Adds ability to set credentials which must be of the
`google.auth.credentials.Credentials` type. This argument is optional
and will default to `None.
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add maximal relevance search to SKLearnVectorStore
This PR implements the maximum relevance search in SKLearnVectorStore.
Twitter handle: jtolgyesi (I submitted also the original implementation
of SKLearnVectorStore)
## Before submitting
Unit tests are included.
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Update [psychicapi](https://pypi.org/project/psychicapi/) python package
dependency to the latest version 0.5. The newest python package version
addresses breaking changes in the Psychic http api.
# Add batching to Qdrant
Several people requested a batching mechanism while uploading data to
Qdrant. It is important, as there are some limits for the maximum size
of the request payload, and without batching implemented in Langchain,
users need to implement it on their own. This PR exposes a new optional
`batch_size` parameter, so all the documents/texts are loaded in batches
of the expected size (64, by default).
The integration tests of Qdrant are extended to cover two cases:
1. Documents are sent in separate batches.
2. All the documents are sent in a single request.
# Added Async _acall to FakeListLLM
FakeListLLM is handy when unit testing apps built with langchain. This
allows the use of FakeListLLM inside concurrent code with
[asyncio](https://docs.python.org/3/library/asyncio.html).
I also changed the pydocstring which was out of date.
## Who can review?
@hwchase17 - project lead
@agola11 - async
# Handles the edge scenario in which the action input is a well formed
SQL query which ends with a quoted column
There may be a cleaner option here (or indeed other edge scenarios) but
this seems to robustly determine if the action input is likely to be a
well formed SQL query in which we don't want to arbitrarily trim off `"`
characters
Fixes#5423
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Agents / Tools / Toolkits
- @vowelparrot
# What does this PR do?
Bring support of `encode_kwargs` for ` HuggingFaceInstructEmbeddings`,
change the docstring example and add a test to illustrate with
`normalize_embeddings`.
Fixes#3605
(Similar to #3914)
Use case:
```python
from langchain.embeddings import HuggingFaceInstructEmbeddings
model_name = "hkunlp/instructor-large"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
hf = HuggingFaceInstructEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
```
This removes duplicate code presumably introduced by a cut-and-paste
error, spotted while reviewing the code in
```langchain/client/langchain.py```. The original code had back to back
occurrences of the following code block:
```
response = self._get(
path,
params=params,
)
raise_for_status_with_text(response)
```
As the title says, I added more code splitters.
The implementation is trivial, so i don't add separate tests for each
splitter.
Let me know if any concerns.
Fixes # (issue)
https://github.com/hwchase17/langchain/issues/5170
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@eyurtsev @hwchase17
---------
Signed-off-by: byhsu <byhsu@linkedin.com>
Co-authored-by: byhsu <byhsu@linkedin.com>
# Creates GitHubLoader (#5257)
GitHubLoader is a DocumentLoader that loads issues and PRs from GitHub.
Fixes#5257
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Added New Trello loader class and documentation
Simple Loader on top of py-trello wrapper.
With a board name you can pull cards and to do some field parameter
tweaks on load operation.
I included documentation and examples.
Included unit test cases using patch and a fixture for py-trello client
class.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add ToolException that a tool can throw
This is an optional exception that tool throws when execution error
occurs.
When this exception is thrown, the agent will not stop working,but will
handle the exception according to the handle_tool_error variable of the
tool,and the processing result will be returned to the agent as
observation,and printed in pink on the console.It can be used like this:
```python
from langchain.schema import ToolException
from langchain import LLMMathChain, SerpAPIWrapper, OpenAI
from langchain.agents import AgentType, initialize_agent
from langchain.chat_models import ChatOpenAI
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)
llm_math_chain = LLMMathChain(llm=llm, verbose=True)
class Error_tool:
def run(self, s: str):
raise ToolException('The current search tool is not available.')
def handle_tool_error(error) -> str:
return "The following errors occurred during tool execution:"+str(error)
search_tool1 = Error_tool()
search_tool2 = SerpAPIWrapper()
tools = [
Tool.from_function(
func=search_tool1.run,
name="Search_tool1",
description="useful for when you need to answer questions about current events.You should give priority to using it.",
handle_tool_error=handle_tool_error,
),
Tool.from_function(
func=search_tool2.run,
name="Search_tool2",
description="useful for when you need to answer questions about current events",
return_direct=True,
)
]
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True,
handle_tool_errors=handle_tool_error)
agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")
```
![image](https://github.com/hwchase17/langchain/assets/32786500/51930410-b26e-4f85-a1e1-e6a6fb450ada)
## Who can review?
- @vowelparrot
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# docs: ecosystem/integrations update
It is the first in a series of `ecosystem/integrations` updates.
The ecosystem/integrations list is missing many integrations.
I'm adding the missing integrations in a consistent format:
1. description of the integrated system
2. `Installation and Setup` section with 'pip install ...`, Key setup,
and other necessary settings
3. Sections like `LLM`, `Text Embedding Models`, `Chat Models`... with
links to correspondent examples and imports of the used classes.
This PR keeps new docs, that are presented in the
`docs/modules/models/text_embedding/examples` but missed in the
`ecosystem/integrations`. The next PRs will cover the next example
sections.
Also updated `integrations.rst`: added the `Dependencies` section with a
link to the packages used in LangChain.
## Who can review?
@hwchase17
@eyurtsev
@dev2049
# docs: ecosystem/integrations update 2
#5219 - part 1
The second part of this update (parts are independent of each other! no
overlap):
- added diffbot.md
- updated confluence.ipynb; added confluence.md
- updated college_confidential.md
- updated openai.md
- added blackboard.md
- added bilibili.md
- added azure_blob_storage.md
- added azlyrics.md
- added aws_s3.md
## Who can review?
@hwchase17@agola11
@agola11
@vowelparrot
@dev2049
# Implemented appending arbitrary messages to the base chat message
history, the in-memory and cosmos ones.
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
As discussed this is the alternative way instead of #4480, with a
add_message method added that takes a BaseMessage as input, so that the
user can control what is in the base message like kwargs.
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Removed deprecated llm attribute for load_chain
Currently `load_chain` for some chain types expect `llm` attribute to be
present but `llm` is deprecated attribute for those chains and might not
be persisted during their `chain.save`.
Fixes#5224
[(issue)](https://github.com/hwchase17/langchain/issues/5224)
## Who can review?
@hwchase17
@dev2049
---------
Co-authored-by: imeckr <chandanroutray2012@gmail.com>
# Update llamacpp demonstration notebook
Add instructions to install with BLAS backend, and update the example of
model usage.
Fixes#5071. However, it is more like a prevention of similar issues in
the future, not a fix, since there was no problem in the framework
functionality
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @hwchase17
- @agola11
# Fix for `update_document` Function in Chroma
## Summary
This pull request addresses an issue with the `update_document` function
in the Chroma class, as described in
[#5031](https://github.com/hwchase17/langchain/issues/5031#issuecomment-1562577947).
The issue was identified as an `AttributeError` raised when calling
`update_document` due to a missing corresponding method in the
`Collection` object. This fix refactors the `update_document` method in
`Chroma` to correctly interact with the `Collection` object.
## Changes
1. Fixed the `update_document` method in the `Chroma` class to correctly
call methods on the `Collection` object.
2. Added the corresponding test `test_chroma_update_document` in
`tests/integration_tests/vectorstores/test_chroma.py` to reflect the
updated method call.
3. Added an example and explanation of how to use the `update_document`
function in the Jupyter notebook tutorial for Chroma.
## Test Plan
All existing tests pass after this change. In addition, the
`test_chroma_update_document` test case now correctly checks the
functionality of `update_document`, ensuring that the function works as
expected and updates the content of documents correctly.
## Reviewers
@dev2049
This fix will ensure that users are able to use the `update_document`
function as expected, without encountering the previous
`AttributeError`. This will enhance the usability and reliability of the
Chroma class for all users.
Thank you for considering this pull request. I look forward to your
feedback and suggestions.
# Add async support for (LLM) routing chains
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Add asynchronous LLM calls support for the routing chains. More
specifically:
- Add async `aroute` function (i.e. async version of `route`) to the
`RouterChain` which calls the routing LLM asynchronously
- Implement the async `_acall` for the `LLMRouterChain`
- Implement the async `_acall` function for `MultiRouteChain` which
first calls asynchronously the routing chain with its new `aroute`
function, and then calls asynchronously the relevant destination chain.
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
- @agola11
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Async
- @agola11
-->
# Fix lost mimetype when using Blob.from_data method
The mimetype is lost due to a typo in the class attribue name
Fixes # - (no issue opened but I can open one if needed)
## Changes
* Fixed typo in name
* Added unit-tests to validate the output Blob
## Review
@eyurtsev