# Implements support for Personal Access Token Authentication in the
ConfluenceLoader
Fixes#5191
Implements a new optional parameter for the ConfluenceLoader: `token`.
This allows the use of personal access authentication when using the
on-prem server version of Confluence.
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@eyurtsev @Jflick58
Twitter Handle: felipe_yyc
---------
Co-authored-by: Felipe <feferreira@ea.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# minor refactor of GenerativeAgentMemory
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
- refactor `format_memories_detail` to be more reusable
- modified prompts for getting topics for reflection and for generating
insights
- update `characters.ipynb` to reflect changes
## Before submitting
<!-- If you're adding a new integration, please include:
1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use
See contribution guidelines for more information on how to write tests,
lint
etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
@vowelparrot
@hwchase17
@dev2049
# docs: modules pages simplified
Fixied #5627 issue
Merged several repetitive sections in the `modules` pages. Some texts,
that were hard to understand, were also simplified.
## Who can review?
@hwchase17
@dev2049
# Fixed multi input prompt for MapReduceChain
Added `kwargs` support for inner chains of `MapReduceChain` via
`from_params` method
Currently the `from_method` method of intialising `MapReduceChain` chain
doesn't work if prompt has multiple inputs. It happens because it uses
`StuffDocumentsChain` and `MapReduceDocumentsChain` underneath, both of
them require specifying `document_variable_name` if `prompt` of their
`llm_chain` has more than one `input`.
With this PR, I have added support for passing their respective `kwargs`
via the `from_params` method.
## Fixes https://github.com/hwchase17/langchain/issues/4752
## Who can review?
@dev2049 @hwchase17 @agola11
---------
Co-authored-by: imeckr <chandanroutray2012@gmail.com>
# Unstructured Excel Loader
Adds an `UnstructuredExcelLoader` class for `.xlsx` and `.xls` files.
Works with `unstructured>=0.6.7`. A plain text representation of the
Excel file will be available under the `page_content` attribute in the
doc. If you use the loader in `"elements"` mode, an HTML representation
of the Excel file will be available under the `text_as_html` metadata
key. Each sheet in the Excel document is its own document.
### Testing
```python
from langchain.document_loaders import UnstructuredExcelLoader
loader = UnstructuredExcelLoader(
"example_data/stanley-cups.xlsx",
mode="elements"
)
docs = loader.load()
```
## Who can review?
@hwchase17
@eyurtsev
Co-authored-by: Alvaro Bartolome <alvarobartt@gmail.com>
Co-authored-by: Daniel Vila Suero <daniel@argilla.io>
Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
# Create elastic_vector_search.ElasticKnnSearch class
This extends `langchain/vectorstores/elastic_vector_search.py` by adding
a new class `ElasticKnnSearch`
Features:
- Allow creating an index with the `dense_vector` mapping compataible
with kNN search
- Store embeddings in index for use with kNN search (correct mapping
creates HNSW data structure)
- Perform approximate kNN search
- Perform hybrid BM25 (`query{}`) + kNN (`knn{}`) search
- perform knn search by either providing a `query_vector` or passing a
hosted `model_id` to use query_vector_builder to automatically generate
a query_vector at search time
Connection options
- Using `cloud_id` from Elastic Cloud
- Passing elasticsearch client object
search options
- query
- k
- query_vector
- model_id
- size
- source
- knn_boost (hybrid search)
- query_boost (hybrid search)
- fields
This also adds examples to
`docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb`
Fixes # [5346](https://github.com/hwchase17/langchain/issues/5346)
cc: @dev2049
-->
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Lint sphinx documentation and fix broken links
This PR lints multiple warnings shown in generation of the project
documentation (using "make docs_linkcheck" and "make docs_build").
Additionally documentation internal links to (now?) non-existent files
are modified to point to existing documents as it seemed the new correct
target.
The documentation is not updated content wise.
There are no source code changes.
Fixes # (issue)
- broken documentation links to other files within the project
- sphinx formatting (linting)
## Before submitting
No source code changes, so no new tests added.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# docs: `ecosystem_integrations` update 3
Next cycle of updating the `ecosystem/integrations`
* Added an integration `template` file
* Added missed integration files
* Fixed several document_loaders/notebooks
## Who can review?
Is it possible to assign somebody to review PRs on docs? Thanks.
# Fix wrong class instantiation in docs MMR example
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->
When looking at the Maximal Marginal Relevance ExampleSelector example
at
https://python.langchain.com/en/latest/modules/prompts/example_selectors/examples/mmr.html,
I noticed that there seems to be an error. Initially, the
`MaxMarginalRelevanceExampleSelector` class is used as an
`example_selector` argument to the `FewShotPromptTemplate` class. Then,
according to the text, a comparison is made to regular similarity
search. However, the `FewShotPromptTemplate` still uses the
`MaxMarginalRelevanceExampleSelector` class, so the output is the same.
To fix it, I added an instantiation of the
`SemanticSimilarityExampleSelector` class, because this seems to be what
is intended.
## Who can review?
@hwchase17
# Update Unstructured docs to remove the `detectron2` install
instructions
Removes `detectron2` installation instructions from the Unstructured
docs because installing `detectron2` is no longer required for
`unstructured>=0.7.0`. The `detectron2` model now runs using the ONNX
runtime.
## Who can review?
@hwchase17
@eyurtsev
# Add Managed Motorhead
This change enabled MotorheadMemory to utilize Metal's managed version
of Motorhead. We can easily enable this by passing in a `api_key` and
`client_id` in order to hit the managed url and access the memory api on
Metal.
Twitter: [@softboyjimbo](https://twitter.com/softboyjimbo)
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@dev2049 @hwchase17
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# added DeepLearing.AI course link
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
not @hwchase17 - hehe
# Bedrock LLM and Embeddings
This PR adds a new LLM and an Embeddings class for the
[Bedrock](https://aws.amazon.com/bedrock) service. The PR also includes
example notebooks for using the LLM class in a conversation chain and
embeddings usage in creating an embedding for a query and document.
**Note**: AWS is doing a private release of the Bedrock service on
05/31/2023; users need to request access and added to an allowlist in
order to start using the Bedrock models and embeddings. Please use the
[Bedrock Home Page](https://aws.amazon.com/bedrock) to request access
and to learn more about the models available in Bedrock.
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
# Support Qdrant filters
Qdrant has an [extensive filtering
system](https://qdrant.tech/documentation/concepts/filtering/) with rich
type support. This PR makes it possible to use the filters in Langchain
by passing an additional param to both the
`similarity_search_with_score` and `similarity_search` methods.
## Who can review?
@dev2049 @hwchase17
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# SQLite-backed Entity Memory
Following the initiative of
https://github.com/hwchase17/langchain/pull/2397 I think it would be
helpful to be able to persist Entity Memory on disk by default
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This PR adds a new method `from_es_connection` to the
`ElasticsearchEmbeddings` class allowing users to use Elasticsearch
clusters outside of Elastic Cloud.
Users can create an Elasticsearch Client object and pass that to the new
function.
The returned object is identical to the one returned by calling
`from_credentials`
```
# Create Elasticsearch connection
es_connection = Elasticsearch(
hosts=['https://es_cluster_url:port'],
basic_auth=('user', 'password')
)
# Instantiate ElasticsearchEmbeddings using es_connection
embeddings = ElasticsearchEmbeddings.from_es_connection(
model_id,
es_connection,
)
```
I also added examples to the elasticsearch jupyter notebook
Fixes # https://github.com/hwchase17/langchain/issues/5239
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
As the title says, I added more code splitters.
The implementation is trivial, so i don't add separate tests for each
splitter.
Let me know if any concerns.
Fixes # (issue)
https://github.com/hwchase17/langchain/issues/5170
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@eyurtsev @hwchase17
---------
Signed-off-by: byhsu <byhsu@linkedin.com>
Co-authored-by: byhsu <byhsu@linkedin.com>
# Creates GitHubLoader (#5257)
GitHubLoader is a DocumentLoader that loads issues and PRs from GitHub.
Fixes#5257
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Added New Trello loader class and documentation
Simple Loader on top of py-trello wrapper.
With a board name you can pull cards and to do some field parameter
tweaks on load operation.
I included documentation and examples.
Included unit test cases using patch and a fixture for py-trello client
class.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add ToolException that a tool can throw
This is an optional exception that tool throws when execution error
occurs.
When this exception is thrown, the agent will not stop working,but will
handle the exception according to the handle_tool_error variable of the
tool,and the processing result will be returned to the agent as
observation,and printed in pink on the console.It can be used like this:
```python
from langchain.schema import ToolException
from langchain import LLMMathChain, SerpAPIWrapper, OpenAI
from langchain.agents import AgentType, initialize_agent
from langchain.chat_models import ChatOpenAI
from langchain.tools import BaseTool, StructuredTool, Tool, tool
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)
llm_math_chain = LLMMathChain(llm=llm, verbose=True)
class Error_tool:
def run(self, s: str):
raise ToolException('The current search tool is not available.')
def handle_tool_error(error) -> str:
return "The following errors occurred during tool execution:"+str(error)
search_tool1 = Error_tool()
search_tool2 = SerpAPIWrapper()
tools = [
Tool.from_function(
func=search_tool1.run,
name="Search_tool1",
description="useful for when you need to answer questions about current events.You should give priority to using it.",
handle_tool_error=handle_tool_error,
),
Tool.from_function(
func=search_tool2.run,
name="Search_tool2",
description="useful for when you need to answer questions about current events",
return_direct=True,
)
]
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True,
handle_tool_errors=handle_tool_error)
agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")
```
![image](https://github.com/hwchase17/langchain/assets/32786500/51930410-b26e-4f85-a1e1-e6a6fb450ada)
## Who can review?
- @vowelparrot
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# docs: ecosystem/integrations update
It is the first in a series of `ecosystem/integrations` updates.
The ecosystem/integrations list is missing many integrations.
I'm adding the missing integrations in a consistent format:
1. description of the integrated system
2. `Installation and Setup` section with 'pip install ...`, Key setup,
and other necessary settings
3. Sections like `LLM`, `Text Embedding Models`, `Chat Models`... with
links to correspondent examples and imports of the used classes.
This PR keeps new docs, that are presented in the
`docs/modules/models/text_embedding/examples` but missed in the
`ecosystem/integrations`. The next PRs will cover the next example
sections.
Also updated `integrations.rst`: added the `Dependencies` section with a
link to the packages used in LangChain.
## Who can review?
@hwchase17
@eyurtsev
@dev2049
# docs: ecosystem/integrations update 2
#5219 - part 1
The second part of this update (parts are independent of each other! no
overlap):
- added diffbot.md
- updated confluence.ipynb; added confluence.md
- updated college_confidential.md
- updated openai.md
- added blackboard.md
- added bilibili.md
- added azure_blob_storage.md
- added azlyrics.md
- added aws_s3.md
## Who can review?
@hwchase17@agola11
@agola11
@vowelparrot
@dev2049
# Update llamacpp demonstration notebook
Add instructions to install with BLAS backend, and update the example of
model usage.
Fixes#5071. However, it is more like a prevention of similar issues in
the future, not a fix, since there was no problem in the framework
functionality
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @hwchase17
- @agola11
# Fix for `update_document` Function in Chroma
## Summary
This pull request addresses an issue with the `update_document` function
in the Chroma class, as described in
[#5031](https://github.com/hwchase17/langchain/issues/5031#issuecomment-1562577947).
The issue was identified as an `AttributeError` raised when calling
`update_document` due to a missing corresponding method in the
`Collection` object. This fix refactors the `update_document` method in
`Chroma` to correctly interact with the `Collection` object.
## Changes
1. Fixed the `update_document` method in the `Chroma` class to correctly
call methods on the `Collection` object.
2. Added the corresponding test `test_chroma_update_document` in
`tests/integration_tests/vectorstores/test_chroma.py` to reflect the
updated method call.
3. Added an example and explanation of how to use the `update_document`
function in the Jupyter notebook tutorial for Chroma.
## Test Plan
All existing tests pass after this change. In addition, the
`test_chroma_update_document` test case now correctly checks the
functionality of `update_document`, ensuring that the function works as
expected and updates the content of documents correctly.
## Reviewers
@dev2049
This fix will ensure that users are able to use the `update_document`
function as expected, without encountering the previous
`AttributeError`. This will enhance the usability and reliability of the
Chroma class for all users.
Thank you for considering this pull request. I look forward to your
feedback and suggestions.
# Add SKLearnVectorStore
This PR adds SKLearnVectorStore, a simply vector store based on
NearestNeighbors implementations in the scikit-learn package. This
provides a simple drop-in vector store implementation with minimal
dependencies (scikit-learn is typically installed in a data scientist /
ml engineer environment). The vector store can be persisted and loaded
from json, bson and parquet format.
SKLearnVectorStore has soft (dynamic) dependency on the scikit-learn,
numpy and pandas packages. Persisting to bson requires the bson package,
persisting to parquet requires the pyarrow package.
## Before submitting
Integration tests are provided under
`tests/integration_tests/vectorstores/test_sklearn.py`
Sample usage notebook is provided under
`docs/modules/indexes/vectorstores/examples/sklear.ipynb`
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>