Adding `UpstashRatelimitHandler` callback for rate limiting based on
number of chain invocations or LLM token usage.
For more details, see [upstash/ratelimit-py
repository](https://github.com/upstash/ratelimit-py) or the notebook
guide included in this PR.
Twitter handle: @cahidarda
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
They cause `poetry lock` to take a ton of time, and `uv pip install` can
resolve the constraints from these toml files in trivial time
(addressing problem with #19153)
This allows us to properly upgrade lockfile dependencies moving forward,
which revealed some issues that were either fixed or type-ignored (see
file comments)
- [x] **Adding AsyncRootListener**: "langchain_core: Adding
AsyncRootListener"
- **Description:** Adding an AsyncBaseTracer, AsyncRootListener and
`with_alistener` function. This is to enable binding async root listener
to runnables. This currently only supported for sync listeners.
- **Issue:** None
- **Dependencies:** None
- [x] **Add tests and docs**: Added units tests and example snippet code
within the function description of `with_alistener`
- [x] **Lint and test**: Run make format_diff, make lint_diff and make
test
## Description
The `path` param is used to specify the local persistence directory,
which isn't required if using Qdrant server.
This is a breaking but necessary change.
This PR adds support for using Databricks Unity Catalog functions as
LangChain tools, which runs inside a Databricks SQL warehouse.
* An example notebook is provided.
The response.get("model", self.model_name) checks if the model key
exists in the response dictionary. If it does, it uses that value;
otherwise, it uses self.model_name.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
langchain-together depends on langchain-openai ^0.1.8
langchain-openai 0.1.8 has langchain-core >= 0.2.2
Here we bump langchain-core to 0.2.2, just to pass minimum dependency
version tests.
decisions to discuss
- only chat models
- model_provider isn't based on any existing values like llm-type,
package names, class names
- implemented as function not as a wrapper ChatModel
- function name (init_model)
- in langchain as opposed to community or core
- marked beta
Thank you for contributing to LangChain!
**Description:** Adds Langchain support for Nomic Embed Vision
**Twitter handle:** nomic_ai,zach_nussbaum
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Lance Martin <122662504+rlancemartin@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** This PR addresses an issue with an existing test that
was not effectively testing the intended functionality. The previous
test setup did not adequately validate the filtering of the labels in
neo4j, because the nodes and relationship in the test data did not have
any properties set. Without properties these labels would not have been
returned, regardless of the filtering.
---------
Co-authored-by: Oskar Hane <oh@oskarhane.com>
This PR adds a constructor `metadata_indexing` parameter to the
Cassandra vector store to allow optional fine-tuning of which fields of
the metadata are to be indexed.
This is a feature supported by the underlying CassIO library. Indexing
mode of "all", "none" or deny- and allow-list based choices are
available.
The rationale is, in some cases it's advisable to programmatically
exclude some portions of the metadata from the index if one knows in
advance they won't ever be used at search-time. this keeps the index
more lightweight and performant and avoids limitations on the length of
_indexed_ strings.
I added a integration test of the feature. I also added the possibility
of running the integration test with Cassandra on an arbitrary IP
address (e.g. Dockerized), via
`CASSANDRA_CONTACT_POINTS=10.1.1.5,10.1.1.6 poetry run pytest [...]` or
similar.
While I was at it, I added a line to the `.gitignore` since the mypy
_test_ cache was not ignored yet.
My X (Twitter) handle: @rsprrs.
**Description:** This PR adds a `USER_AGENT` env variable that is to be
used for web scraping. It creates a util to get that user agent and uses
it in the classes used for scraping in [this piece of
doc](https://python.langchain.com/v0.1/docs/use_cases/web_scraping/).
Identifying your scraper is considered a good politeness practice, this
PR aims at easing it.
**Issue:** `None`
**Dependencies:** `None`
**Twitter handle:** `None`
# package community: Fix SQLChatMessageHistory
## Description
Here is a rewrite of `SQLChatMessageHistory` to properly implement the
asynchronous approach. The code circumvents [issue
22021](https://github.com/langchain-ai/langchain/issues/22021) by
accepting a synchronous call to `def add_messages()` in an asynchronous
scenario. This bypasses the bug.
For the same reasons as in [PR
22](https://github.com/langchain-ai/langchain-postgres/pull/32) of
`langchain-postgres`, we use a lazy strategy for table creation. Indeed,
the promise of the constructor cannot be fulfilled without this. It is
not possible to invoke a synchronous call in a constructor. We
compensate for this by waiting for the next asynchronous method call to
create the table.
The goal of the `PostgresChatMessageHistory` class (in
`langchain-postgres`) is, among other things, to be able to recycle
database connections. The implementation of the class is problematic, as
we have demonstrated in [issue
22021](https://github.com/langchain-ai/langchain/issues/22021).
Our new implementation of `SQLChatMessageHistory` achieves this by using
a singleton of type (`Async`)`Engine` for the database connection. The
connection pool is managed by this singleton, and the code is then
reentrant.
We also accept the type `str` (optionally complemented by `async_mode`.
I know you don't like this much, but it's the only way to allow an
asynchronous connection string).
In order to unify the different classes handling database connections,
we have renamed `connection_string` to `connection`, and `Session` to
`session_maker`.
Now, a single transaction is used to add a list of messages. Thus, a
crash during this write operation will not leave the database in an
unstable state with a partially added message list. This makes the code
resilient.
We believe that the `PostgresChatMessageHistory` class is no longer
necessary and can be replaced by:
```
PostgresChatMessageHistory = SQLChatMessageHistory
```
This also fixes the bug.
## Issue
- [issue 22021](https://github.com/langchain-ai/langchain/issues/22021)
- Bug in _exit_history()
- Bugs in PostgresChatMessageHistory and sync usage
- Bugs in PostgresChatMessageHistory and async usage
- [issue
36](https://github.com/langchain-ai/langchain-postgres/issues/36)
## Twitter handle:
pprados
## Tests
- libs/community/tests/unit_tests/chat_message_histories/test_sql.py
(add async test)
@baskaryan, @eyurtsev or @hwchase17 can you check this PR ?
And, I've been waiting a long time for validation from other PRs. Can
you take a look?
- [PR 32](https://github.com/langchain-ai/langchain-postgres/pull/32)
- [PR 15575](https://github.com/langchain-ai/langchain/pull/15575)
- [PR 13200](https://github.com/langchain-ai/langchain/pull/13200)
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:** The InMemoryVectorStore is a nice and simple vector
store implementation for quick development and debugging. The current
implementation is quite limited in its functionalities. This PR extends
the functionalities by adding utility function to persist the vector
store to a json file and to load it from a json file. We choose the json
file format because it allows inspection of the database contents in a
text editor, which is great for debugging. Furthermore, it adds a
`filter` keyword that can be used to filter out documents on their
`page_content` or `metadata`.
- **Issue:** -
- **Dependencies:** -
- **Twitter handle:** @Vincent_Min
- [ ] **community**: "vectorstore: added filtering support for LanceDB
vector store"
- [ ] **This PR adds filtering capabilities to LanceDB**:
- **Description:** In LanceDB filtering can be applied when searching
for data into the vectorstore. It is using the SQL language as mentioned
in the LanceDB documentation.
- **Issue:** #18235
- **Dependencies:** No
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
This PR adds deduplication of callback handlers in merge_configs.
Fix for this issue:
https://github.com/langchain-ai/langchain/issues/22227
The issue appears when the code is:
1) running python >=3.11
2) invokes a runnable from within a runnable
3) binds the callbacks to the child runnable from the parent runnable
using with_config
In this case, the same callbacks end up appearing twice: (1) the first
time from with_config, (2) the second time with langchain automatically
propagating them on behalf of the user.
Prior to this PR this will emit duplicate events:
```python
@tool
async def get_items(question: str, callbacks: Callbacks): # <--- Accept callbacks
"""Ask question"""
template = ChatPromptTemplate.from_messages(
[
(
"human",
"'{question}"
)
]
)
chain = template | chat_model.with_config(
{
"callbacks": callbacks, # <-- Propagate callbacks
}
)
return await chain.ainvoke({"question": question})
```
Prior to this PR this will work work correctly (no duplicate events):
```python
@tool
async def get_items(question: str, callbacks: Callbacks): # <--- Accept callbacks
"""Ask question"""
template = ChatPromptTemplate.from_messages(
[
(
"human",
"'{question}"
)
]
)
chain = template | chat_model
return await chain.ainvoke({"question": question}, {"callbacks": callbacks})
```
This will also work (as long as the user is using python >= 3.11) -- as
langchain will automatically propagate callbacks
```python
@tool
async def get_items(question: str,):
"""Ask question"""
template = ChatPromptTemplate.from_messages(
[
(
"human",
"'{question}"
)
]
)
chain = template | chat_model
return await chain.ainvoke({"question": question})
```
Thank you for contributing to LangChain!
**Description:** update to the Vectara / Langchain integration to
integrate new Vectara capabilities:
- Full RAG implemented as a Runnable with as_rag()
- Vectara chat supported with as_chat()
- Both support streaming response
- Updated documentation and example notebook to reflect all the changes
- Updated Vectara templates
**Twitter handle:** ofermend
**Add tests and docs**: no new tests or docs, but updated both existing
tests and existing docs
- [ ] **Packages affected**:
- community: fix `cosine_similarity` to support simsimd beyond 3.7.7
- partners/milvus: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/mongodb: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/pinecone: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/qdrant: fix `cosine_similarity` to support simsimd beyond
3.7.7
- [ ] **Broadcast operation failure while using simsimd beyond v3.7.7**:
- **Description:** I was using simsimd 4.3.1 and the unsupported operand
type issue popped up. When I checked out the repo and ran the tests,
they failed as well (have attached a screenshot for that). Looks like it
is a variant of https://github.com/langchain-ai/langchain/issues/18022 .
Prior to 3.7.7, simd.cdist returned an ndarray but now it returns
simsimd.DistancesTensor which is ineligible for a broadcast operation
with numpy. With this change, it also remove the need to explicitly cast
`Z` to numpy array
- **Issue:** #19905
- **Dependencies:** No
- **Twitter handle:** https://x.com/GetzJoydeep
<img width="1622" alt="Screenshot 2024-05-29 at 2 50 00 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/fb27b383-a9ae-4a6f-b355-6d503b72db56">
- [ ] **Considerations**:
1. I started with community but since similar changes were there in
Milvus, MongoDB, Pinecone, and QDrant so I modified their files as well.
If touching multiple packages in one PR is not the norm, then I can
remove them from this PR and raise separate ones
2. I have run and verified that the tests work. Since, only MongoDB had
tests, I ran theirs and verified it works as well. Screenshots attached
:
<img width="1573" alt="Screenshot 2024-05-29 at 2 52 13 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/ce87d1ea-19b6-4900-9384-61fbc1a30de9">
<img width="1614" alt="Screenshot 2024-05-29 at 3 33 51 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/6ce1d679-db4c-4291-8453-01028ab2dca5">
I have added a test for simsimd. I feel it may not go well with the
CI/CD setup as installing simsimd is not a dependency requirement. I
have just imported simsimd to ensure simsimd cosine similarity is
invoked. However, its not a good approach. Suggestions are welcome and I
can make the required changes on the PR. Please provide guidance on the
same as I am new to the community.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
### Description
Add tools implementation to `ChatEdenAI`:
- `bind_tools()`
- `with_structured_output()`
### Documentation
Updated `docs/docs/integrations/chat/edenai.ipynb`
### Notes
We don´t support stream with tools as of yet. If stream is called with
tools we directly yield the whole message from `generate` (implemented
the same way as Anthropic did).
- [x] **PR title**: Update docstrings for OpenAI base.py
-**Description:** Updated the docstring of few OpenAI functions for a
better understanding of the function.
- **Issue:** #21983
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Noticing errors logged in some situations when tracing with Langsmith:
```python
from langchain_core.pydantic_v1 import BaseModel
from langchain_anthropic import ChatAnthropic
class AnswerWithJustification(BaseModel):
"""An answer to the user question along with justification for the answer."""
answer: str
justification: str
llm = ChatAnthropic(model="claude-3-haiku-20240307")
structured_llm = llm.with_structured_output(AnswerWithJustification)
list(structured_llm.stream("What weighs more a pound of bricks or a pound of feathers"))
```
```
Error in LangChainTracer.on_chain_end callback: AttributeError("'NoneType' object has no attribute 'append'")
[AnswerWithJustification(answer='A pound of bricks and a pound of feathers weigh the same amount.', justification='This is because a pound is a unit of mass, not volume. By definition, a pound of any material, whether bricks or feathers, will weigh the same - one pound. The physical size or volume of the materials does not matter when measuring by mass. So a pound of bricks and a pound of feathers both weigh exactly one pound.')]
```
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
The Vectorstore's API `as_retriever` doesn't expose explicitly the
parameters `search_type` and `search_kwargs` and so these are not well
documented.
This PR improves `as_retriever` for the Cassandra VectorStore by making
these parameters explicit.
NB: An alternative would have been to modify `as_retriever` in
`Vectorstore`. But there's probably a good reason these were not exposed
in the first place ? Is it because implementations may decide to not
support them and have fixed values when creating the
VectorStoreRetriever ?
- **Description:** Added support for using HuggingFacePipeline in
ChatHuggingFace (previously it was only usable with API endpoints,
probably by oversight).
- **Issue:** #19997
- **Dependencies:** none
- **Twitter handle:** none
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
This PR introduces namespace support for Upstash Vector Store, which
would allow users to partition their data in the vector index.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
## Description
This PR allows passing the HTMLSectionSplitter paths to xslt files. It
does so by fixing two trivial bugs with how passed paths were being
handled. It also changes the default value of the param `xslt_path` to
`None` so the special case where the file was part of the langchain
package could be handled.
## Issue
#22175
- [X] **PR title**: "community: added optional params to Airtable
table.all()"
- [X] **PR message**:
- **Description:** Add's **kwargs to AirtableLoader to allow for kwargs:
https://pyairtable.readthedocs.io/en/latest/api.html#pyairtable.Table.all
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** parakoopa88
- [X] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
"community/embeddings: update oracleai.py"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
Adding oracle VECTOR_ARRAY_T support.
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
Tests are not impacted.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Done.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- **Description:** When I was running the SparkLLMTextEmbeddings,
app_id, api_key and api_secret are all correct, but it cannot run
normally using the current URL.
```python
# example
from langchain_community.embeddings import SparkLLMTextEmbeddings
embedding= SparkLLMTextEmbeddings(
spark_app_id="my-app-id",
spark_api_key="my-api-key",
spark_api_secret="my-api-secret"
)
embedding= "hello"
print(spark.embed_query(text1))
```
![sparkembedding](https://github.com/langchain-ai/langchain/assets/55082429/11daa853-4f67-45b2-aae2-c95caa14e38c)
So I updated the url and request body parameters according to
[Embedding_api](https://www.xfyun.cn/doc/spark/Embedding_api.html), now
it is runnable.
**Description:** [IPEX-LLM](https://github.com/intel-analytics/ipex-llm)
is a PyTorch library for running LLM on Intel CPU and GPU (e.g., local
PC with iGPU, discrete GPU such as Arc, Flex and Max) with very low
latency. This PR adds ipex-llm integrations to langchain for BGE
embedding support on both Intel CPU and GPU.
**Dependencies:** `ipex-llm`, `sentence-transformers`
**Contribution maintainer**: @Oscilloscope98
**tests and docs**:
- langchain/docs/docs/integrations/text_embedding/ipex_llm.ipynb
- langchain/docs/docs/integrations/text_embedding/ipex_llm_gpu.ipynb
-
langchain/libs/community/tests/integration_tests/embeddings/test_ipex_llm.py
---------
Co-authored-by: Shengsheng Huang <shannie.huang@gmail.com>
Anthropic's streaming treats tool calls as different content parts
(streamed back with a different index) from normal content in the
`content`.
This means that we need to update our chunk-merging logic to handle
chunks with multi-part content. The alternative is coerceing Anthropic's
responses into a string, but we generally like to preserve model
provider responses faithfully when we can. This will also likely be
useful for multimodal outputs in the future.
This current PR does unfortunately make `index` a magic field within
content parts, but Anthropic and OpenAI both use it at the moment to
determine order anyway. To avoid cases where we have content arrays with
holes and to simplify the logic, I've also restricted merging to chunks
in order.
TODO: tests
CC @baskaryan @ccurme @efriis
**Description**
Fix AzureSearch delete documents method by using FIELDS_ID variable
instead of the hard coded "id" value
**Issue:**
This is linked to this issue:
https://github.com/langchain-ai/langchain/issues/22314
Co-authored-by: dseban <dan.seban@neoxia.com>