<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This reverts commit a46eef64a7.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Provide a way to use different text for embedding.
- For example, if you are ingesting stack-overflow Q&As for RAG, you
would want to embed the questions and return the answer(s) for the hits.
With this change, the consumer of langchain can implement that easily.
- I noticed the similar function is added on faiss.py with #1912 which
was for performance reason, but I see the same function can be used to
achieve what I thought. So instead of changing Document class to have
embedding_content, I mimicked the implementation of faiss.py.
- The test should provide some guidance on how to use it. It would be
more intuitive if I just pass texts and embedding_texts as separate
arguments, but I chose to use `zip`-ed object for the consistency with
faiss.py implementation.
- I plan to make similar pull request for OpenSearch.
- **Issue:** N/A
- **Dependencies:** None other than the existing ones.
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Adding Pydantic v2 support for OpenAPI Specs
- **Issue:**
- OpenAPI spec support was disabled because `openapi-schema-pydantic`
doesn't support Pydantic v2:
#9205
- Caused errors in `get_openapi_chain`
- This may be the cause of #9520.
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** kreneskyp
The root cause was that `openapi-schema-pydantic` hasn't been updated in
some time but
[openapi-pydantic](https://github.com/mike-oakley/openapi-pydantic)
forked and updated the project.
Added a notebook with examples of the creation of a retriever from the
SingleStoreDB vector store, and further usage.
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Updated the elasticsearch self query retriever to use the match clause
for LIKE operator instead of the non-analyzed fuzzy search clause.
Other small updates include:
- fixing the stack inference integration test where the index's default
pipeline didn't use the inference pipeline created
- adding a user-agent to the old implementation to track usage
- improved the documentation for ElasticsearchStore filters
### Description:
To provide an eas llm service access methods in this pull request by
impletementing `PaiEasEndpoint` and `PaiEasChatEndpoint` classes in
`langchain.llms` and `langchain.chat_models` modules. Base on this pr,
langchain users can build up a chain to call remote eas llm service and
get the llm inference results.
### About EAS Service
EAS is a Alicloud product on Alibaba Cloud Machine Learning Platform for
AI which is short for AliCloud PAI. EAS provides model inference
deployment services for the users. We build up a llm inference services
on EAS with a general llm docker images. Therefore, end users can
quickly setup their llm remote instances to load majority of the
hugginface llm models, and serve as a backend for most of the llm apps.
### Dependencies
This pr does't involve any new dependencies.
---------
Co-authored-by: 子洪 <gaoyihong.gyh@alibaba-inc.com>
Description: Supported RetryOutputParser & RetryWithErrorOutputParser
max_retries
- max_retries: Maximum number of retries to parser.
Issue: None
Dependencies: None
Tag maintainer: @baskaryan
Twitter handle:
We now require uses to have the pip package `llmonitor` installed. It
allows us to have cleaner code and avoid duplicates between our library
and our code in Langchain.
FAISS does not implement embeddings method and use embed_query to
embedding texts which is wrong for some embedding models.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
feat: Raise KeyError when 'prompt' key is missing in JSON response
This commit updates the error handling in the code to raise a KeyError
when the 'prompt' key is not found in the JSON response. This change
makes the code more explicit about the nature of the error, helping to
improve clarity and debugging.
@baskaryan, @eyurtsev.
I may be missing something but it seems like we inappropriately overrode
the 'stream()' method, losing callbacks in the process. I don't think
(?) it gave us anything in this case to customize it here?
See new trace:
https://smith.langchain.com/public/fbb82825-3a16-446b-8207-35622358db3b/r
and confirmed it streams.
Also fixes the stopwords issues from #12000
- **Description:** According to the document
https://cloud.baidu.com/doc/WENXINWORKSHOP/s/clntwmv7t, add ERNIE-Bot-4
model support for ErnieBotChat.
- **Dependencies:** Before using the ERNIE-Bot-4, you should have the
model's access authority.
By default replace input_variables with the correct value
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
.dict() is a Pydantic method that cannot raise exceptions, as it is used
eg. in `__eq__`
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Type hinting `*args` as `List[Any]` means that each positional argument
should be a list. Type hinting `**kwargs` as `Dict[str, Any]` means that
each keyword argument should be a dict of strings.
This is almost never what we actually wanted, and doesn't seem to be
what we want in any of the cases I'm replacing here.