### Description
The feature for anonymizing data has been implemented. In order to
protect private data, such as when querying external APIs (OpenAI), it
is worth pseudonymizing sensitive data to maintain full privacy.
Anonynization consists of two steps:
1. **Identification:** Identify all data fields that contain personally
identifiable information (PII).
2. **Replacement**: Replace all PIIs with pseudo values or codes that do
not reveal any personal information about the individual but can be used
for reference. We're not using regular encryption, because the language
model won't be able to understand the meaning or context of the
encrypted data.
We use *Microsoft Presidio* together with *Faker* framework for
anonymization purposes because of the wide range of functionalities they
provide. The full implementation is available in `PresidioAnonymizer`.
### Future works
- **deanonymization** - add the ability to reverse anonymization. For
example, the workflow could look like this: `anonymize -> LLMChain ->
deanonymize`. By doing this, we will retain anonymity in requests to,
for example, OpenAI, and then be able restore the original data.
- **instance anonymization** - at this point, each occurrence of PII is
treated as a separate entity and separately anonymized. Therefore, two
occurrences of the name John Doe in the text will be changed to two
different names. It is therefore worth introducing support for full
instance detection, so that repeated occurrences are treated as a single
object.
### Twitter handle
@deepsense_ai / @MaksOpp
---------
Co-authored-by: MaksOpp <maks.operlejn@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: this PR adds `s3_object_key` and `s3_bucket` to the doc
metadata when loading an S3 file. This is particularly useful when using
`S3DirectoryLoader` to remove the files from the dir once they have been
processed (getting the object keys from the metadata `source` field
seems brittle)
- Dependencies: N/A
- Tag maintainer: ?
- Twitter handle: _cbornet
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This PR makes the following changes:
1. Documents become serializable using langhchain serialization
2. Make a utility to create a docstore kw store
Will help to address issue here:
https://github.com/langchain-ai/langchain/issues/9345
In the function _load_run_evaluators the function _get_keys was not
called if only custom_evaluators parameter is used
- Description: In the function _load_run_evaluators the function
_get_keys was not called if only custom_evaluators parameter is used,
- Issue: no issue created for this yet,
- Dependencies: None,
- Tag maintainer: @vowelparrot,
- Twitter handle: Buckler89
---------
Co-authored-by: ddroghini <d.droghini@mflgroup.com>
Description: This commit uses the new Service object in Selenium
webdriver as executable_path has been [deprecated and removed in
selenium version
4.11.2](9f5801c82f)
Issue: https://github.com/langchain-ai/langchain/issues/9808
Tag Maintainer: @eyurtsev
- Description: In my previous PR, I had modified the code to catch all
kinds of [SOURCES, sources, Source, Sources]. However, this change
included checking for a colon or a white space which should actually
have been only checking for a colon.
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
Adds support for [llmonitor](https://llmonitor.com) callbacks.
It enables:
- Requests tracking / logging / analytics
- Error debugging
- Cost analytics
- User tracking
Let me know if anythings neds to be changed for merge.
Thank you!
Co-authored-by: Daniel Brenot <dbrenot@pelmorex.com>
Co-authored-by: Daniel <daniel.alexander.brenot@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
The [Memory](https://python.langchain.com/docs/modules/memory/) menu is
clogged with unnecessary wording.
I've made it more concise by simplifying titles of the example
notebooks.
As results, menu is shorter and better for comprehend.
The [Memory
Types](https://python.langchain.com/docs/modules/memory/types/) menu is
clogged with unnecessary wording.
I've made it more concise by simplifying titles of the example
notebooks.
As results, menu is shorter and better for comprehend.
- Description: the implementation for similarity_search_with_score did
not actually include a score or logic to filter. Now fixed.
- Tag maintainer: @rlancemartin
- Twitter handle: @ofermend